sinc関数ってありますよね!
あれって、定義は何なんですか?
sinc x=sin x/x
と思ってるんですが・・・・ある教科書には
sinc x=sin πx/πx
ってなってるんです。どっちが正しいの?教えてください。
あと、読み方なんですけど、何って呼ぶんですか?「シンク」って呼びたくなるんですけど、あってますか?
でも、sinh は「ハイパボリックサイン」呼びますよね~。
教えてください。

A 回答 (1件)

 


  これは、「ジンク関数」と呼ぶようです。ドイツ語読みですね。
 
  sinc x=(sin x)/x と sinc x=(sin πx)/πx は、
  πx=X とすると、sinc X=(sin πx)/πx=(sin X)/X で同じことです。
  周期関数なので、周波数に関係して、πを係数として入れておく表現法があるというだけのことでしょう。
 

参考URL:http://www2.dmt.ibaraki.ac.jp/lab/itlab/shinma/o …
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qx+1/x=3のとき、x^3+1/x^3の値を求めなさい。 やり方がわかりません。どなたか、教えてく

x+1/x=3のとき、x^3+1/x^3の値を求めなさい。
やり方がわかりません。どなたか、教えてください。

Aベストアンサー

(x+1/x)³=27
x³+3x+3/x+1/x³=27
x³+1/x³+3(x+1/x)=27
x³+1/x³+3²=27
x³+1/x³=18

Q数II 2次方程式です。 ⑴ (x-1)x+(x+1)(x+2)=0 ⑵x^2=(2x+1)(x

数II 2次方程式です。

⑴ (x-1)x+(x+1)(x+2)=0

⑵x^2=(2x+1)(x+2)

⑶0.1x^2+0.3x+0.9=0

答え ⑴x=-1±√3ℹ︎/2 ⑵x=-5±√17/2
⑶x=-3±3√3ℹ︎/2

よろしくお願いします!

Aベストアンサー

3問ともばらしてから
ax^2+bx+c=0 の時の解の公式
x=(-b±√(b^2-4ab))/2a を使う。

(1)(x-1)x+(x+1)(x+2)=0
=x^2-x+x^2+3x+2
=2x^2+2x+2
=x^2+x+1
x=(-1±√(1^2-4・1・・))/2・1
x=(-1±√3i)/2

⑵x^2=(2x+1)(x+2)
x^2=2x^2+5x+2
x^2+5x+2=0
x=(-5±√(5^2-4・1・2))/1・2
=(-5±√17)/2

(3)0.1x^2+0.3x+0.9=0 両辺に10をかける
x^2+3x+9=0
X=(-3±√(9-4・1・9))/2・1
=(-3±√(-27))/2
=(-3±3(√3)i)/2

Q次の曲線と2直線及びx軸で 囲まれた部分の面積Sを求めよ (1)y=x²+2x+2 x=0 x=1

次の曲線と2直線及びx軸で
囲まれた部分の面積Sを求めよ

(1)y=x²+2x+2 x=0 x=1

この問題の回答には
0以上x以下2では0<yであるから
S= … と書いてありますが
なぜ0以上yでは駄目なのかが
わかりません。
教えてくださるとありがたいです。

Aベストアンサー

問題は、

(1)y=x²+2x+2
 x=0
 x=1
 及びx軸
で囲まれた面積を求めよ、ということですね?

そこで、
 y=x²+2x+2 = (x + 1)² + 1  ①
は、どうして y>0 であって、y≧0 でないのか、というのが質問ですね?

①式で
 (x + 1)² ≧ 0   ②
です。実数であれば、2乗すれば必ず「正の数」になりますから。ここで、等号が成立するのは、
 x + 1 = 0
つまり
 x = -1
のときだけです。

②式を①式に代入すれば
 (x + 1)² + 1 ≧ 1   ③
で、等号が成立するのは、
 x = -1
のときだけということになります。よいですか?

③では、1 > 0 ですから(等しくないので、等号が成立することはない)
 (x + 1)² + 1 ≧ 1 > 0
つまり
 (x + 1)² + 1 > 0
ということになります。「1 > 0 で、等しくないので、等号が成立することはない」のですから、ここには等号はあり得ません。


>例えば
>y= - 2x² - 1 (x= - 2 x=1)
>の場合だとyは0以上になるのは
>どうしてですか?

x=-2 だと y=-5、x=1 だと y=-3 で、y が0以上にはなりませんね。

この場合には、
 y = -2x² - 1 = -(2x² + 1)
ですから、すべての x に対して
 x² ≧ 0 (等号成立は x=0 のとき)
です。従って
 2x² + 1 ≧ 1 (等号成立は x=0 のとき)
です。
 1 > 0 (等号が成立することはない)
ですから、
 2x² + 1 > 0
従って
 y = -2x² - 1 < 0
です。

y ≦ -1 (等号成立は x=0 のとき)であって、y=0 となることはあり得ません。(だって、-1<0 で等号は成立しませんから)


どういうときに等号が成立するのか、考えている式は等号が成立し得るのか、ということを考えれば分かると思います。

問題は、

(1)y=x²+2x+2
 x=0
 x=1
 及びx軸
で囲まれた面積を求めよ、ということですね?

そこで、
 y=x²+2x+2 = (x + 1)² + 1  ①
は、どうして y>0 であって、y≧0 でないのか、というのが質問ですね?

①式で
 (x + 1)² ≧ 0   ②
です。実数であれば、2乗すれば必ず「正の数」になりますから。ここで、等号が成立するのは、
 x + 1 = 0
つまり
 x = -1
のときだけです。

②式を①式に代入すれば
 (x + 1)² + 1 ≧ 1   ③
で、等号が成立するのは、
 x = -1
のときだけということになります。よ...続きを読む

Q高校1年の数学の問題です。 (1)x2乗−7x=0 (2)4x2乗−25=0 (3)25x2乗=9

高校1年の数学の問題です。

(1)x2乗−7x=0
(2)4x2乗−25=0
(3)25x2乗=9
(4)(2x−1)2乗=7
教えていただけますか?
できれば早めがいいです。

Aベストアンサー

(1)x^2-7x=0
x(x-7)=0 x=0,7

(2)4x^2-25=0
(2x-5)(2x+5)=0 x=±5/2

(3)25x^=9
(5x-3)(5x+3)=0 x=±3/5

(4)(2x-1)^2=7
4x^2-4x-8=0
x^2-x-2=0
(x-2)(x+1)=0 x=2,-1

まず公式を覚えること。この程度は暗算で出来るように練習すること。

Q二次関数f(x)=aX^2+bX+c について、Y=f(x)のグラフをCとする。 1<=X<=5 に

二次関数f(x)=aX^2+bX+c について、Y=f(x)のグラフをCとする。

1<=X<=5 において、f(x)は最小値-3をとり、X=2のとき最大値6をとる。このとき、a=-1、b=4、c=2 である。

なぜa=-1、b=4、c=2 になるのかわかりません。教えてください!

Aベストアンサー

xの範囲が1≦x≦5 x=2で最大値6、上に凸(a<0)の放物線、
最小値-3はx=5の時とわかる。
微分を習っているなら、最大値x=2の時、f'(x)=0となる
f'(x)=2aX+b
f'(2)=2a2+b=0
4a=-b ①

x=2で最大値6、から
f(2)=a2^2+b2+c=6
=4a+2b+c ①を代入
=-b+2b+c
=b+c=6 → c=6-b ②

最小値-3はx=5の時から
f(5)=a5^2+b5+c
=25a+5b+c
=25a+5b+6-b
=25a+4b+6=-3
25a+4b=-9
25a+4(-4a)=-9 ①を代入、符号は変えている
9a=-9
a=-1 が得られる後は①や②からb=4 c=2

答え a=-1 b=4 c=0


人気Q&Aランキング

おすすめ情報