【先着1,000名様!】1,000円分をプレゼント!

統計の表現法の解釈に関して教えてください。

例えば、検定群A,対照群Bという2つのグループがあって、BよりAの方が平均値は少し高い結果が得られたものの、しかしバラつきが大きいため、統計的な有意差が無いと計算された場合、よく文献などで、
”統計的に有意な差は無いが、Aの方が値が高い傾向が認められた。”
などと表現されていますが、こういう表現はしても良いものなのでしょうか?

客観的な指標として統計を用いて差は確認出来なかったと計算されたのに、(おそらく期待した結果は差が出ることなので)心象としては差があると主張するのは諦めが悪いと言うか、話の進め方になんだか違和感があるのですが。。。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

ある実験のなかで「対照群と実験群とで差があった」という結果が出れば,たとえ統計的に有意な差が認められなくてもその結果を全く無視するということもできないでしょう。

もしかしたら,サンプルサイズが小さかったなどの問題があったのかもしれません。それ以外にも実験を行う上での制約の関係もあったのかもしれない。。。

統計学というのは確率論ですから,たとえ有意差が認められたとしてもそれが絶対ではありません。だから統計学的な結果も重要ですが,それだけで判断しても良いということはないのです。

こういった問題を解決するためにメタアナリシスのような分析方法が存在するのだと思います。
    • good
    • 1
この回答へのお礼

ご回答ありがとうございます。
検定結果が絶対ではないという事ですね。
ご意見、よくわかりました。
なるほど、前提条件の問題もあるかもしれないですね。
場合場合によって、色々な判断がありえるという事なのですね。

お礼日時:2006/11/21 18:45

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Q回帰関係の有意性と回帰係数の有意性の意味

「回帰関係の有意性」と「回帰係数の有意性」についての質問です。

この2つなんですが、それぞれ何故こんなことをするのでしょうか?
また何がわかるのでしょうか?

式を見たりしてもイマイチ理解ができず、困っています。
簡潔に説明して頂けると大変有り難いです(><;)

よろしくお願いします。

Aベストアンサー

>式を見たりしてもイマイチ理解ができず
統計学を数式で説明できるヒトなら可能です。私は、もっぱら国語で理解していますので。それと、回帰分析を何度もやればなんとかなります。といっても、回帰分析の解釈は、専門家でも間違っている例をいくつも知っています。

>「回帰関係の有意性」
有意性の判定を相関係数で行うのなら、x軸とy軸の両者の関係は偶然なのか否かの判定をします。有意であれば、回帰式も適切である、と考えます

>「回帰係数の有意性」
 回帰係数は、重回帰分析の時に、どの因子の影響が強いか、の判断に使えます。総合的なテストをして、国語と数学の点数との重回帰分析をすれば、どちらの能力が有利の判定は、回帰係数の大きいほうが有利、と判断します。

 回帰係数の有意性を利用するような検討は、想定しがたいのですが、間違いありませんか。有意性ではなく、有用性なら、回答は上記です。
 ご質問に忠実に解答すれば、数学と国語の関係の回帰式を日米2カ国で算出、この回帰式が異なること(日米では異なること)を示したい、なんぞの判定は、回帰係数の有意性から判断できます(同じであることは、主張できません)。すなわち、AとBの回帰式は異なる、ことを主張したいときには利用できますが、私の分野では使われた論文を読んだ記憶はありません。
 

>式を見たりしてもイマイチ理解ができず
統計学を数式で説明できるヒトなら可能です。私は、もっぱら国語で理解していますので。それと、回帰分析を何度もやればなんとかなります。といっても、回帰分析の解釈は、専門家でも間違っている例をいくつも知っています。

>「回帰関係の有意性」
有意性の判定を相関係数で行うのなら、x軸とy軸の両者の関係は偶然なのか否かの判定をします。有意であれば、回帰式も適切である、と考えます

>「回帰係数の有意性」
 回帰係数は、重回帰分析の時に、どの因子の...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

Qサンプル数の異なる2群間におけるT検定について

サンプル数の異なる(50,15)2群間の身長の比較を行うのに、T検定をするよう指示を受けました。これは、長男と次男での出産時の身長に差があるかを調べるためですが、長男50人分と次男15人分(母親は異なる)のデータのため、サンプル数が違います。またT検定は私の理解では平均の比較(2群の場合)を行うものであるため、平均ではないこれらにどうしてT検定が良いのか、また統計ソフト(STATISTICAかエクセル)を使う場合にどのようにデータを入力すれば良いのかわかりません。
どなたかご存知の方がいらっしゃればアドバイスをいただけたらうれしいです。
よろしくお願いします。

Aベストアンサー

>平均ではないこれらにどうしてT検定が良いのか
 t検定は、2つの集団の平均値の差について検定する、すなわち、有意差があるかどうかを判定します。平均ではないように見えても、検定の計算式の中に、2群の平均値を用いています。
 ただ、前提時要件があって、2群が正規分布していることが必要です。サンプルを選んだときに、無作為抽出していたり、サンプル数が1000ほどあれば、正規分布を想定できます。

 検定法は、どの方法を選ぶかは、研究者の自由です。わたしがt検定を多用するのは、正規分布を想定でき、計算式が分かりやすく、サンプル数が2群で異なっても良い、その数も少なくて良い(大差があるので、1群3例でも有意差をだしています)、そして有意差が出やすいからです。

 この場合は、正規分布しているという条件を満たしているとはいえないだろうと判断します。その場合は、F検定をしてください。これは、2群の平均値ではなく、バラツキによって検定する方法です。正規分布している必要は無いとされています。
 F検定で有意差があれば、問題ありません。t検定では有、F検定ではなし、になると方針が定まりませんが(現在このデータで悩んでいます)。

>どのようにデータを入力すれば良いのか
 t検定を指示した人は、身近にいないのでしょうか。その人に訊くのが一番です。身近にいないのなら、いないと返答があれば、書き込みますが。 というのも、大学などの研究テーマだと、指導教員をさしおいて、はマズイノデ。もしも、このテーマに興味を持てば、私が実施して先に発表します。こんな研究内容がハッキリ分かる書き込みを4年生がやったら、研究室は追放ですね。
 長男、次男だけではなく、三男、四男となると多重比較という方法になります。この場合、H検定(エクセルだけでは無理でしょう)を使います。

>平均ではないこれらにどうしてT検定が良いのか
 t検定は、2つの集団の平均値の差について検定する、すなわち、有意差があるかどうかを判定します。平均ではないように見えても、検定の計算式の中に、2群の平均値を用いています。
 ただ、前提時要件があって、2群が正規分布していることが必要です。サンプルを選んだときに、無作為抽出していたり、サンプル数が1000ほどあれば、正規分布を想定できます。

 検定法は、どの方法を選ぶかは、研究者の自由です。わたしがt検定を多用するのは、正規分布を想...続きを読む

Q2群間平均の差の検定 差が“ない”ことを示すには?

2群間平均の差の検定 差が“ない”ことを示すには?

お世話になってます。

2群の平均を比べて,両者の平均には差が“ない”という仮説を設定して検定したいと考えています。
通常の2群間の平均の差の検定は,両者の平均に差が“ある”ことを仮説として設定して,
帰無仮説に「2群の平均に有意な差がない」を設定し,対立仮説に「2群の平均に有意な差がある」を設定しています。
もし両者の平均には差が“ない”という仮説を検定したい場合には,単純にt検定を行って,棄却されなかった=「2群の平均に有意な差がない」という結論ではいけないと統計の授業で習った気がします。
その理由を説明できなくて申し訳ないですが・・・

そこで質問なのですが,
帰無仮説に「2群の平均に有意な差がある」を設定し,対立仮説に「2群の平均に有意な差がない」を設定してもよいのでしょうか?
そして,「2群の平均に有意な差がある」という帰無仮説を検定するためにはどのような検定方法を用いればいいのでしょうか?

お時間ございましたら,ご教示のほど宜しくお願い申しあげます。

Aベストアンサー

>「2群の平均に有意な差がある」という帰無仮説を検定するためにはどのような検定方法を用いればいいのでしょうか?
私は、初心者の罠と名付けています。ただ、初心者はこのような疑問は思いつかないのですが。
過去の回答ですが
http://oshiete.goo.ne.jp/qa/4008560.html

Q統計で、有意水準を、0.01あるいは、0.05に決める意味は?

統計で、有意水準を、0.01あるいは、0.05に決める意味が
わかりません。分析する人によって決められると思うのですが、何を基準に
きめればよいのでしょうか?

あと、t検定とは、どんな検定の仕方なのでしょうか?よろしくお願いします。

Aベストアンサー

◇0.05と0.01の使い分けについて

 一般的には 0.05 (危険率5%)を使います。

 理由は、工業製品の場合、多数の集合体から少数をサンプリングして
 カタマリが合格するか?または違いがあるか短時間に判断を
 下す(スクリーニングする)ことが要求されます。 
  また、正確な結果を求めるには、それ相応のデータ数を採る必要
 ありますが、それには時間と労力が掛かります。
 従いまして、費用対効果を念頭におき、危険率を決めます。
 
 大抵の場合、危険率5%の有意差検定にて済みます。
 但し、要求が厳しい場合とか、測定結果の差が大きい場合には
 1%でも検定して結果を記載します。

◇t分布表にて判断する適用範囲;下記条件の場合 t分布を使います。

<< 適用条件 >>
 ロットが異なる2つのサンプル群の標準偏差が未知な場合。
<< 適用範囲 >> 
 1.サンプリングして得られた平均値の差に違いがあるか?判断する場合。
 2.平均値の範囲を推定する(区間推定)場合。

例)ある製品を条件を変えて製造した場合、2つの集合体(カタマリ)
   ができる。そこから各30ケづつサンプリングして平均値を求める。
   この平均値に違いがあるか判断する場合に t分布を使います。

 一般的な工業製品は、全数検査しないうえ、これから作るモノの品質を
 予測しながら保証しければなりません。この場合にはt分布を使うわけです。
 
 一方、サンプル全数を測定して標準偏差が分かっている場合は、
 正規分布表にて有意差検定します。
 つまり、母集団の標準偏差が既知(キチ)の場合、正規分布表を使います。

◇その他
 ご参考まで、既にご存知であろうと思いますが・・・
・0.05 とは危険率 5%という意味で, 確率 5%の割合で間違った
 判断を下す事があるという事です。 
・検定結”判果にて ”有意差が無い”ということは ”同じである"という事
 ではありません。 このデータだけからでは断が下せない”と
 いうだけです。
                       以 上
                  

◇0.05と0.01の使い分けについて

 一般的には 0.05 (危険率5%)を使います。

 理由は、工業製品の場合、多数の集合体から少数をサンプリングして
 カタマリが合格するか?または違いがあるか短時間に判断を
 下す(スクリーニングする)ことが要求されます。 
  また、正確な結果を求めるには、それ相応のデータ数を採る必要
 ありますが、それには時間と労力が掛かります。
 従いまして、費用対効果を念頭におき、危険率を決めます。
 
 大抵の場合、危険率5%の有意差検定にて済みま...続きを読む

QT検定とMann-WhitneyのU検定の使い分け

ある2郡間の平均値において、統計的に有意な差があるかどうか検定したいです。ちなみに、対応のない2郡間での検定です。

T検定を行うには、ある程度のサンプル数(20以上程度?)があった方が良く、サンプル数が少ない場合には、Mann-WhitneyのU検定を行うのが良いと聞いたのですが、それは正しいのでしょうか?
また、それが正しい場合には実際にどの程度のサンプル数しかない時にはMann-WhitneyのU検定を行った方がよろしいのでしょうか?
例えば、サンプル数が10未満の場合はどうしたらよろしいのでしょうか?

また、T検定を使用するためには、正規分布に従っている必要があるとのことですが、毎回正規分布に従っているか検定する必要があるということでしょうか?その場合には、コルモゴルフ・スミノルフ検定というものでよろしいのでしょうか?

それから、ノンパラメトリックな方法として、Wilcoxonの符号化順位検定というものもあると思いますが、これも使う候補に入るのでしょうか。

統計についてかなり無知です、よろしくお願いします。

Aベストアンサー

結局ですね、適切な検定というのは適切なp値が得られるということなんですよ。適切なp値というのは第1種の過誤と第2種の過誤をなるべく低くするようにする方法を選ぶということなのですね。

従来どおりの教科書には「事前検定をし、正規性と等分散性を仮定できたら、、、」と書いていありますが、そもそも事前検定をする必要はないというのが例のページの話なのです。どちらが正しいかというと、どちらも正しいのです。だから、ある研究者はマンホイットニーのU検定を行うべきだというかもしれませんし、私のようにいかなる場合においてもウェルチの検定を行う方がよいという者もいるということです。

ややこしく感じるかもしれませんが、もっと参考書を色々と読んで分析をしていくうちにこういった内容もしっくり来るようになると思います。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング