出産前後の痔にはご注意!

y=e^sinxの微分はどうなるんでしょうか?

自分でやってみたんですが

y'=conx*e^sinxであってるんでしょうか?

どなたか教えてください

A 回答 (4件)

再びお邪魔します。



ほかの方のご回答の中に気になる点がありましたので、補足します。

この微分は、
e^f(x) という形に限定されたものではなく、
「合成関数の微分」の考え方を使うのです。

すなわち、
u = sinx
とおいて、
dy/dx = dy/du・du/dx
= d(e^u)/du・d(sinx)/dx
= e^u・cosx
= e^(sinx)・cosx

・・・って、
たぶん質問者さんはすでにお分かりになっているとは思いますが。(笑)
    • good
    • 2

e^f(x)の微分は(f(x)はxの関数)よく出てくるので覚えておいたほうが良いですよ。


f(x)’がf(x)を関数xで微分した形だったなら
y=e^f(x)の微分は
dy/dx=y’=f(x)’*e^f(x)です。
    • good
    • 0

もう15年も前に数学IIIと縁が切れてしまった者ですが…



対数関数の微分?を使って、質問者さんの答えで正解ですよね。でもどんな問題集にも略解ついているのに… 教科書の問題ですか? だったら教科書ガイドは多少お金がかかっても持っているべきと思いますけどー学校の先生には反対されると思いますがー
    • good
    • 0

合ってます。


conx じゃなくて、cosx ですね。(笑)
    • good
    • 0
この回答へのお礼

みなさんアザアアアアアッス!

Cosですね!ミステイクです!


おかげで助かりました!

お礼日時:2007/06/02 22:41

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qe^sinXの展開式について。。。

e^sinXの展開式ってどうなるのですか?

Aベストアンサー

以下のようになります。

1+x+(1/2)x^2 -(1/8)x^4 -(1/15)x^5 -(1/240)x^6
+(1/90)x^7 +(31/5760)x^8 +(1/5760)x^9 -(2951/3628800)x^10 +・・・・

注)各種数学ソフトを使えば簡単に展開式が出てきます。

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

Q(sinx)^xの微分と(logx)^xの微分

すいません間違えました。(sinx)^xの微分と(logx)^xの微分 です。

Aベストアンサー

sin(x)^x=y(x) とおくとxlog sin(x)=log yです。両辺xで微分してlog sin(x) + xcos(x)/sin(x)=y/y'.これでy'が求まりました。log(x)^xも全く同じやりかたでできます。

Qeの微分の公式について

e^xの微分はe^xですが
e^f(x)の微分はf'(x)e^f(x)でいいのでしょうか?
ネットで調べたのですが、e^xの微分の公式の説明ばかりだったので教えてください

Aベストアンサー

あってますよ。
普通に検索すると、確かに見つけにくいですね^^
http://www-antenna.ee.titech.ac.jp/~hira/hobby/symbolic/derive.html

Q高校の数学で積分できない関数

y=e^(x^2)「イーのエックス二乗乗」は積分できないんですか?
高校の数学で積分できない関数は何か判別法でもあるのでしょうか?

Aベストアンサー

この問題は多くの人が疑問に感じると思われるのに書いてある本は少ない。困ったことだと思います。この積分は初等関数で表せない(もちろん置換積分でできない)ことは有名ですが、初等関数は多項式、指数関数、三角関数、
およびそれらの逆関数、その組み合わせに限りません。yが
 An y^n + An-1 y^(n-1) + … + A0 = 0
の解(ここでAn, An-1, …, A0はxの多項式)のようなときにもyはxの初等関数であると言います。また組み合わせは有限回の組み合わせに限ります。無限回の合成を含めれば
 cos(x)=ax
の解などもaの初等関数ということになってしまいます。
 不定積分が初等関数で表せるかどうかの判定にはリュービルの定理が重要な部分を占めています。しかしリュービルの定理自身はそのような判定を与えるものでありません。一般的な判定法はRischのアルゴリズムと呼ばれるもので、リュービルの結果はすでに昔の話です。数式処理に積分のアルゴリズムを組み込むことなどもRischの結果で初めて可能になったものであり、それに触れないのではきわめて不十分な回答と言わざるを得ないでしょう。Rischのアルゴリズムについては
 佐々木建昭:bit,12(5), p.738
や数式処理の専門書にあります。
 なお、
∫e^(-x^2)dx= x - x^3/3 + x^5/5・2! - x^7/7・3!+…
∫e^(-x^2)dx=-e^(-x^2)[1/2x - 1/2^2x^3 + 1・3/2^3x^5 -…]
という漸近展開が成り立ちます。

この問題は多くの人が疑問に感じると思われるのに書いてある本は少ない。困ったことだと思います。この積分は初等関数で表せない(もちろん置換積分でできない)ことは有名ですが、初等関数は多項式、指数関数、三角関数、
およびそれらの逆関数、その組み合わせに限りません。yが
 An y^n + An-1 y^(n-1) + … + A0 = 0
の解(ここでAn, An-1, …, A0はxの多項式)のようなときにもyはxの初等関数であると言います。また組み合わせは有限回の組み合わせに限ります。無限回の合成を含めれば
 cos(x)=ax
の...続きを読む

Q長さの単位であるAの上に丸がついた記号は何mですか。

こんばんは。Aの上に丸がついた単位をよく見ますが、これは「オームストローム」のことでしょうか。違うのであればこの単位をメートルに直したときどのような値をとるのか教えてください。

Aベストアンサー

この答えでいいのでしょうか。

☆Å(オングストローム/angstrom) 
長さの補助単位。
10の-10乗=百億分の1メートル。電磁波の波長測定や、原子物理学・結晶学・分子学などで用いる。
記号 Å または A で表す。
スウェーデンの物理学者オングストレームの名にちなむ。

参考URL:http://www.sun-inet.or.jp/~nao2/jiten/sonota.htm

Qdxやdyの本当の意味は?

宜しくお願いします。

昔、高校で
dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。
が、微分方程式ではdyとdxをばらばらにして解を求めたりします。
「両辺をdy倍して…」等々、、、
また、積分の置換積分では約分したりもしますよね。

結局、dy/dxは一塊ではないんですか??やはり分数なのですか?
(何だか高校の数学では騙されてたような気がしてきました)
一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい
のにとも思ったりします。

実際の所、
dxの定義は何なんですか?
dyの定義は何なのですか?
本当はdxとdyはばらばらにできるのですか?

どなたかご教示いただけましたら幸いでございます。

Aベストアンサー

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、普通のまっすぐなユークリッドの座標xを基準に取ることがほとんどです。そういうわけで、微分形式(特に1次の微分形式)はdxを基準に取ることが普通です。もちろんdyも1次の微分形式と呼ばれます。なにやら難しそうだけれども、dxや、dyといったものは、座標関数の全微分を表すものなんだ、ということで、単独で定義できるものだということは理解しておいて欲しいと思います。

さて、ふたつの座標x、yには通常ある種の関数関係があることがほとんどです。たとえばy=log xなど。これはグラフのイメージでいうと、普通のグラフを対数グラフにした、というイメージです。あるいは、中学高校でよくやっているのは(もちろん意識してませんが)、x軸かy軸を適当に尺度を変えてやるという変換、y=axというのもよくやります。さて、このときyの全微分をxの全微分で表せないか?ということを考えます。それが次の式です。大学では多変数バージョンを普通やります。

y=f(x)とyがxの関数でかけているとき、yの全微分d(y)はxの全微分d(x)を用いて、
d(y)=f'(x)d(x)
と表される。

これは微積分でやる置換積分の公式(チェイン・ルール)と呼ばれるものそのものです。代数的取り扱いに慣れているのならば、微分形式を抽象的な階数付交代代数と思うことができて、上で表されるチェイン・ルールが成り立つもの、と定義してもよいかと思います。いずれにせよ、微分形式の立場からいうと、d(x)やd(y)は単独に定義できる諸量です。

その意味では、dy/dxという記号は二つの意味に解釈できます。すなわちyというxの関数をxで微分した、という単なる記号だと思う方法(もちろんそれはy=f(x)であるときは、f'(x)を指すわけです)、ただし(d/dx)yと書くほうが望ましい。もうひとつは、微分形式dyとdxの変換則とみる(つまりdyとdxの比だと思う)という方法です。これはdy=f'(x)dxなのだから、dyはdxに比例定数f'(x)で比例している、と思うのだ、というわけです。分数の表記は形式的な意味しか持ちません。ですが、この両方の解釈をよくよく考えてみると、dy/dxは本当に分数のように扱うことが出来ることも意味しています。むしろそうできるように微分形式(dyとかdxとか)の記号を作ったと思うほうがよいでしょう。もう一度かくと、(d/dx)y=dy/dxなのだ、ということです。左が微分記号だと思う立場、右が微分形式の比だと思う立場。いずれも同じ関数f'(x)になっているのです。学習が進めば進むほど、この記号のすごさが理解できると思います。うまく出来すぎていると感嘆するほどです。

微分記号と思うという立場にたったとき、なぜd/dxと書くのか、あるいは積分記号になぜdxがつくのか、ということは高校レベルの数学では理解することはできません。もともとたとえばニュートンなんかが微分を考えたときは、d/dxなどという記号は使わず、単に点(ドット)を関数の上につけて微分を表していたりしました。そういう意味では、現在の微分記号のあり方というのは、単に微分するという記号を超えて、より深遠な意味を持っているとてもすごい記号なのだといえます。

なお蛇足ですが、1次の微分形式は、関数xの微小増加量(の1次近似)とみなすことができて、その意味で、無限小量という解釈も出来ます。物理などでよく使われる考え方です。またこれは大学3年レベルだと思いますが、微分形式を積分したりします。実はそれが高校でも現れる、∫(なんとかかんとか)dxというやつなのです。

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、...続きを読む

Q1 / (x^2+1)^(3/2)の積分について

1 / (x^2+1)^(3/2) の積分なのですが、これはどのように解いたら良いのでしょうか?
置換積分法で解こうとしても解けませんでしたし、部分積分法でもいまいち分かりませんでした。
ちなみに答えは x / (1 + x^2)^(1/2) + C となっていました。

どなたか解説よろしくお願いします。

Aベストアンサー

正攻法で、
x=tanTとおくと、
dx=[1+(tanT)^2]dT
dx=[1+x^2]dT

∫dT/√(1+tanT^2)・・・(-π/2<T<π/2)
=∫dTcosT
=sinT・・・(sinTとtanTの符号が一致しているのを確認して、)
=x/√(x^2+1)
こんな感じでしょうか。


人気Q&Aランキング