マンガでよめる痔のこと・薬のこと

蒸気圧の実験によってclausius clapeyronよりΔH ΔSをだしたのですが(エタノールと水)、 これらの文献がなかなか見つかりません。ΔH ΔSの文献値を教えてください。 

このQ&Aに関連する最新のQ&A

A 回答 (1件)

まずは「化学便覧 基礎編 / 日本化学会編」(丸善)で調べてみて下さい。


図書館にあると思います。熱的性質に関する章(改訂5版なら10章、改訂4版なら9章)に、転移エンタルピーの表があります。

次善の策としては、「理科年表 / 国立天文台編」(丸善)があります。
物理/化学部の熱化学の項に、蒸発エンタルピー(蒸発熱)の表があります。理科年表の化学に関する項目は化学便覧に比べると貧弱なのですけど、化学便覧よりもはるかに安いので、大きめの本屋さんなら置いてあります。

あとは、アトキンス物理化学などの、物理化学の教科書の巻末に載っている可能性があります。
お手持ちの教科書を確認してください。ただし間違った数値が載っていることがしばしばあります。

最後の手段としては、Wikipediaがあります。
化学便覧や理科年表と比べると、Wikipediaの信頼性は著しく低いので、参考URLにある値を「文献値」としてよいかどうかは、意見の分かれるところだと思います。注意して使ってください。

参考URL:http://en.wikipedia.org/wiki/Enthalpy_of_vaporiz …
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q水の標準蒸発エンタルピー

H2O(l)→H2O(g)のとき
標準蒸発エンタルピーΔvapH゜(373K)=+40.66kJ/molとでますが
どの文献を調べても計算方法が載っていませんでした。
どのように計算すれば標準蒸発エンタルピーを求めることができるのでしょうか
またΔvapH゜(373K)の(  )内の温度が473K、はたまた1273Kでも計算できるのでしょうか
よろしくお願いします

Aベストアンサー

水の標準蒸発エントロピーの計算方法はClausius-Clapeyronの式で求めることができます。ln(P/P0)=-(ΔHv/R)(1/T)+(ΔSv/R)がClausius-Clapeyronの式です。まず、さまざまな圧力Pにおける沸点Tのデータ5個ぐらいを文献で調べます。(水なら化学便覧に載っています)これをExcelを用いて、PとTをそれぞれln(P/P0)と(1/T)にします。P0は大気圧で、Pの単位と同じにします。(1atm=760mmHg=1.01315×10^5Pa=760Torr(正確に))次に、ln(P/P0)を縦軸に、(1/T)を横軸にとり、プロットします。(excelでは図の挿入)そうすると、一次関数が得られると思うので、その傾きからΔHvが、切片からΔSvを求めることができます。

また、H=H(P,T)、つまりエンタルピーは圧力と温度の関数です。標準エンタルピーはH0=H(1atm,T)と定義されています。すなわちΔvapH0は(1気圧における)標準蒸発エンタルピーということを表しています。1気圧における水の沸点は約100度なので、かっこ内に、373と書いてあるのです。そのため473K,1273Kとなる場合はないです。

水の標準蒸発エントロピーの計算方法はClausius-Clapeyronの式で求めることができます。ln(P/P0)=-(ΔHv/R)(1/T)+(ΔSv/R)がClausius-Clapeyronの式です。まず、さまざまな圧力Pにおける沸点Tのデータ5個ぐらいを文献で調べます。(水なら化学便覧に載っています)これをExcelを用いて、PとTをそれぞれln(P/P0)と(1/T)にします。P0は大気圧で、Pの単位と同じにします。(1atm=760mmHg=1.01315×10^5Pa=760Torr(正確に))次に、ln(P/P0)を縦軸に、(1/T)を横軸にとり、プロットします。(excelでは図の挿入)そうする...続きを読む

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Q沸点と蒸発エンタルピーから蒸発エントロピーを求める方法がわかりません。

沸点と蒸発エンタルピーから蒸発エントロピーを求める方法はありますか?参考書を何冊か読んだのですが特に参考になるものが見つかりませんでした…。
ちなみに僕が調べているのはクロロホルムについてです。
よろしくお願い致します。

Aベストアンサー

ΔG=ΔH-TΔS

Q理論値、文献値、推定値などの違いを教えてください。

レポートを書いているのですが、一般によく知られている物理定数の値を「理論値」、「文献値」、「推定値」、もしくは別の言葉のどれで表現したらいいのか分かりません。例えばよく知られているプランク定数の値6.62×10^-34 J・s はどの言葉で表現したらいいのでしょうか?また、物理定数によって使うべき言葉も変わってくるのでしょうか?その場合は例を挙げていただけると嬉しいです。よろしくお願いします。

Aベストアンサー

>「理論値」、「文献値」、「推定値」

その値を理論的な計算で出したなら「理論値」と言います。
プランク定数の導出理論があるのか知りませんが,
しかるべきクオーク理論(??)から理論的に導いた値なら「理論値」です。

文献で調べた値,すなわち本に書いてある値を
「どうやって出したのかは知らないが,本に書いてあるから大丈夫だろう」
と思って使う場合は「文献値」です。
厳格には「どの本から引用した」を示す必要があります。
(本により,計った人により,年代により,違うかもしれない)

何かの実験で出した値なら「実験値」,

簡単な見積もり計算などで推定したなら「推定値」

と呼ぶでしょう。

もし,学部の物理実験で,プランク定数を計測する実験をやったレポートを書いているなら,
「実験値」と「文献値」を比べることになるでしょう。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q活性化エネルギーの求め方が分かりません

ある反応において、35℃における速度定数が25℃の2倍になったという。
この反応の活性化エネルギーはいくらか求めたいのですが、わかりません。
教えてください!

Aベストアンサー

ryota7さんがお答えのように『アレーニウスの式』を利用すれば計算できると思いますよ。

『アレーニウスの式』では速度定数をk、頻度因子をA,活性化エネルギーEa、気体定数R、温度T(絶対温度)、ネピアの定数をeとすると

K=A×eの(-Ea/RT)乗  つまりK=Ae^(-Ea/RT)となります。

ここで、25℃における頻度因子、活性化エネルギーは35℃におけるそれらと等しい(この温度間で変化しない)と仮定します。
そして、25℃の時の速度定数、K(25℃)と35℃の時の速度定数、K(35℃)の比を計算します。

K(35℃)/K(25℃)は、問題の設定から2倍ですから、

K(35℃)/K(25℃)=2=A(35℃)e^(-Ea/RT1)/ A(25℃)e^(-Ea/RT2)となります。

ここではT1は35℃に相当する絶対温度で35+273(k)T2は25℃に相当する絶対温度で25+273(k)です。
また、この式から分かるように頻度因子は約分されてしまいます。

両辺の自然対数(底が10の常用対数ではありません。常用対数を使うのならば換算しなければなりません。)をとると

ln2=(-Ea/RT1)-(-Ea/RT2)

Ea/Rは共通なので

ln2=(Ea/R)(1/T2-1/T1)となります。

ここへT1,T2、Rを代入すればEaは簡単に計算できます。

用いる気体常数の単位に気をつけてください。
私が学生の頃は旧単位系なので1.987を用いていました。

これを用いると計算結果はカロリーで出てきます。
それをキロカロリーに換算して用いていました。
現在はSI単位系つまりKJ/molでないといけないと思いますが、考え方自体は変わらないはずです。

ちなみに、ln2=0.693として計算すると12.6kcal/mol(旧単位系)となりました。

ryota7さんがお答えのように『アレーニウスの式』を利用すれば計算できると思いますよ。

『アレーニウスの式』では速度定数をk、頻度因子をA,活性化エネルギーEa、気体定数R、温度T(絶対温度)、ネピアの定数をeとすると

K=A×eの(-Ea/RT)乗  つまりK=Ae^(-Ea/RT)となります。

ここで、25℃における頻度因子、活性化エネルギーは35℃におけるそれらと等しい(この温度間で変化しない)と仮定します。
そして、25℃の時の速度定数、K(25℃)と35℃の時の速度定数、K(35℃)の比を計算します。

...続きを読む

Q部分モル体積とは?

初めまして、bababanbanと申します。
物理化学を勉強していると、部分モル量や部分モル体積といった言葉をよく目にします。

部分モル体積とは何なのでしょう?
どういうものなのかいまいちイメージができないため、質問させていただきました。

宜しくお願い致します。

Aベストアンサー

2成分A,Bからなる溶液を考えます。この溶液に成分Aを1モル加えたときの溶液の体積変化をAの部分モル体積といいます。ただし溶液はAを1モル加えても濃度の変化がないくらい多量にあるとします。これを用いると溶液にAをdnAモル、BをdnBモル加えた際の体積変化は以下のようになります。VAはAの部分モル体積です。
dV=VAdnA+VBdnB

Qクラウジウス-クラペイロンの式について

以前 QNo.125760 水の温度変化の質問の中でクラウジウス-クラペイロンの式について出ていましたが、いまいち理解できません。この式について、詳しく噛み砕いてお教え願えないでしょうか?
よろしくお願いします。

Aベストアンサー

クラウジウス-クラペイロンの式は、蒸気圧曲線の傾きを求める公式です。

クラウジウス-クラペイロンの式を使うと、『蒸気圧曲線が温度の単調増加関数であること』を、簡単に証明することができます。蒸気圧曲線が温度の単調増加関数であるということは、「温度が高くなれば飽和蒸気圧が高くなり、温度が低くなれば飽和蒸気圧が低くなる」ということです。ですから、これと、「飽和蒸気圧が大気圧と等しくなる温度で液体は沸騰する」ということをあわせて考えると、

「大気圧が低ければ沸点は降下し,高ければ沸点は上昇する」

ということができます。つまり、クラウジウス-クラペイロンの式を使うと、大気圧が変わると沸点が変わることを説明できます。

以下は、クラウジウス-クラペイロンの式に関する説明です。

温度 T のときの蒸気圧曲線の傾き dP/dT は、温度 T のときの気化熱(蒸発熱)L、温度 T のときの飽和蒸気の体積 vg、温度 T のときの液体の体積 vl と、式(1)の関係があります。

dP    L
― = ――――     (1)
dT  T(vg-vl)

この式をクラウジウス-クラペイロンの式といいます。ここで、温度 T は摂氏温度ではなく、絶対温度です。また気化熱には、モル当たりの気化熱、体積 vg と vl にはモル当たりの体積を使います(気化熱に1グラム当たりの気化熱を使ってもいいです。このときは体積 vg と vl には1グラム当たりの体積を使います)。

気化熱 L は正の値、絶対温度 T も正の値、飽和蒸気の体積と液体の体積の差 vg-vlも正の値ですので、式(1)の右辺は正の値になります。よって、dP/dT > 0 となり、蒸気圧曲線が温度の単調増加関数であることが証明されました。

式(1)は、「熱力学的に厳密な式」と呼ばれる類の、とても正確な式なのですけど、このままでは少し使いづらいので、近似式が使われることが多いです。

近似1:飽和蒸気の体積 vg は液体の体積 vl よりずっと大きいので、vg-vl=vg と近似する。
近似2:蒸気を理想気体だと考えて、vg=RT/Pと近似する。ここで R は気体定数、Pは飽和蒸気圧。

この二つの近似を使うと、式(1)の近似式は式(2)になります。

dP   L P
― = ―――     (2)
dT  R T^2

この式もクラウジウス-クラペイロンの式といいます。式(1)にあった飽和蒸気の体積 vg と液体の体積 vl が式(2)では消えているので、式(2)の方が、式(1)よりも使いやすい形をしています。

もうひとつ近似を入れると、蒸気圧曲線の傾きだけではなく、『蒸気圧曲線そのもの』を求める公式を得ることができます。

近似3:気化熱 L は、温度に依らない。

この近似は、前の二つの近似と比べると、ちょっと荒い近似なのですけど、ともかくこの近似を使うと、蒸気圧曲線を求める公式が得られます。

ln(P/101325Pa)=(L/R) (1/Tb - 1/T)     (3)

この式もクラウジウス-クラペイロンの式といいます。左辺のlnは、自然対数(eを底とする対数)をとることを意味します。またTb は、圧力が1気圧=760mmHg=101325Pa のときの沸点です。

クラウジウス-クラペイロンの式と呼ばれている式がいくつもあって、ちょっと紛らわしいのですけど、まあどれも似たようなものですし、式の違いが重要なときには、たいてい数式が書いてありますから、混乱することは少ないと思います。QNo.125760 に数式が書いていないのは、高校生向けに書かれたものだからでしょう。

クラウジウス-クラペイロンの式は、蒸気圧曲線の傾きを求める公式です。

クラウジウス-クラペイロンの式を使うと、『蒸気圧曲線が温度の単調増加関数であること』を、簡単に証明することができます。蒸気圧曲線が温度の単調増加関数であるということは、「温度が高くなれば飽和蒸気圧が高くなり、温度が低くなれば飽和蒸気圧が低くなる」ということです。ですから、これと、「飽和蒸気圧が大気圧と等しくなる温度で液体は沸騰する」ということをあわせて考えると、

「大気圧が低ければ沸点は降下し,高けれ...続きを読む

Q部分モル体積を求める。

部分モル体積を求める。

表 25℃における塩化ナトリウム水溶液の密度

NaClの重量モル濃度 mol/kg  NaCl水溶液の密度 kg/dm^3 (3乗です)

0               0.99707
0.5135             1.018
1.027              1.038
1.539               1.055
2.052               1.074
2.566              1.091
3.081               1.109
3.591              1.125
4.106              1.141
4.614              1.152

この数値から溶液の部分モル体積を求めるという問いです。
よろしくおねがいします。

Aベストアンサー

物理化学実験法(千原秀昭ほか,東京化学同人)の「液体の密度」の項に、求め方が三通りほど書かれています。実験書を読んで、もし納得がいかないところがあれば、この回答の補足欄でお知らせください。

実験書に書いてあるとおり、部分モル体積を求めるにはデータをグラフにプロットする必要があります。ただし部分モル体積(partial molar volume)ではなく、みかけのモル体積(apparent molar volume)を求めるだけでよいならば、#1さんの計算に似たようなやり方で求めることができます。こちらはネット検索ですぐに見つかりますから、探して読んでみてください。

参考URL:http://www.google.co.jp/search?q=みかけのモル体積


人気Q&Aランキング

おすすめ情報