A 回答 (12件中1~10件)
- 最新から表示
- 回答順に表示
No.12
- 回答日時:
黙って「有理数の稠密性」と言えば、
普通は、順序稠密性のほうを指すと思うのですが…
無論、この問題では、有理数の実数における稠密性
(位相の意味での稠密性)のほうが肝心です。
有理数の順序稠密性を示すのは簡単で、
有理数 p, q に対して、p < q ならば p < (p + q) / 2 < q
というだけで済みます。これを使って、
両端が有理数であるような実数の開区間 (p,q) の中に
有理数が無限に含まれることを、
#8 補足の方法で示すこともできます。
後は、実数の任意の開区間 (a. b) の中に
両端が有理数であるような開区間 (p,q) が含まれる
ことを示せば完了ですが、それには、
有理数の実数における稠密性を
#5 補足のようにして示せばよい。
とはいえ、この方法は冗長です。
質問者さん自身の証明のほうが、ずっとよい。
#10 補足を見ると、#8 補足の時点で
有理数のほうの証明は完成しているように思われます。
あっているようですよ。
無理数のほうの証明も、それで ok でしょう。
文章を、少し整えたほうがよいけれど。
この回答への補足
回答ありがとうございます。
無理数のほうは少し雑に書きすぎたかもしれません。
自分で適宜文章をなおします。
>有理数のほうの証明は完成しているように思われます。
そうですか。有理数はあの方法でokですか。
わざわざありがとうございました。
No.11
- 回答日時:
>最後の一文がすこし不安ですが・・・。
であれば、「同様の証明」の内容をもう少し明確化すればよいでしょう。
あえて文句をつけるとすれば、
「任意の無理数Mに対してM + {-r(n-1)}が有理数となる」
はこの世に無理数がまったく存在しなくても成立するので、
わざわざMなどをもってこなくても適当に√2とかにしておけば良いでしょう。
No.10
- 回答日時:
>えっと・・・証明は完了したんでしょうか?
> 自覚がないです。あってるんでしょうか?
あってるのか分かんないのであれば、完了してないんだよ。
無理数が無限にある件も手つかずだしね。
ちなみに私はずっと位相空間の意味の稠密性だと思ってました。
順序集合 (Q, <) の稠密性をヒントとするにしても、
a, b が無理数の場合に Q と無理数 a との関係を何らかの形で検討する必要がありますよね。
この回答への補足
あってると思っていても間違っていることに気付かないでわかったつもりになることがありますよね。
それはいやだったので一応自分の考えを述べたうえで、参考意見を聞きたいと思ってここに投稿しています。
koko_u_さんの仰るとおり、自覚がないならできたとは到底言えませんね。自分の考えに確信を持つには、自分ひとりでは思い違いのことがあるので。。。無理数の場合は以下のように考えました。
実数の任意の開区間としてa<X<bとしXはすべて有理数と
仮定する。a<p<q<b となる有理数p、q が存在する。
よってr=q-p も有理数である。任意の無理数Mに対して
n-1≦(M-p)/r<n となる整数 n が存在する。このとき
p≦M-r(n-1)<p+r=q より、
M+{-r(n-1)}が有理数となりMが無理数であることに矛盾する。よって任意の開区間(a,b)は無理数を含むことが言えて、このMをあらたに開区間の端としてとって同様の証明ができるから無理数は無限個存在する。
最後の一文がすこし不安ですが・・・。
よろしくお願いします。
No.9
- 回答日時:
証明が完了したところで、横から失礼。
話を #1, #3 の補足要求「有理数の稠密性とは何か?」に戻すのですが、
「稠密性」という言葉には、二つの異なる意味があります。
一つは、位相空間 T とその部分集合 S に関して
「S は、T において稠密である。」という場合の「稠密性」。
もう一つは、順序集合 S に関して
「S は、稠密である。」という場合の「稠密性」。
両方とも「稠密性」と呼んでしまいますが、異なる概念です。
普通、説明なしに「有理数の稠密性」と言えば、
後者の意味の稠密性を指すものだと思います。
#5, #6 への補足に登場しているのは、有理数の実数における稠密性、
前者の意味での稠密性です。
#1 さんが確認したかったのは、この辺を理解しているかどうか
だったのではないかと思うのですが…
この回答への補足
回答ありがとうございます。
稠密性に2つの意味があるのですか。
勉強不足で後者はあまり知りませんでした。
#1さんへ的外れな補足をしていたんでしょうか?
失礼いたしました。
えっと・・・証明は完了したんでしょうか?
自覚がないです。あってるんでしょうか?
No.8
- 回答日時:
実際には「異なる区間から異なる有理数をとれる」のは簡単に証明できるんですが, その線でいこうとすると今度は「無限個の区間がとれる」ことを示さないとダメで, その証明はもとの問題の証明と大差ないような気がします.
... えっと, 言っておいてアレですがそんな証明は実は不要で, (a, b) に存在する有理数 p と (a, p) に存在する有理数 q は必ず異なります. これで「無限個の有理数が存在する」ことが示せます.
または, a < p < q < b なる有理数 p, q をとってきて f(n) = p + (q-p)/n とおくと任意の整数 n に対して f(n) は有理数で n ≠ m なら f(n) ≠ f(m) です. つまり集合 { f(n) } は自然数の集合と 1対1 に対応がつくので (可算) 無限個の要素を持ちます.
もっというと, 「有限個しかない」と仮定して背理法でもできますね. a < p1 < p2 < ... < pn < b とおくと (p1+p2)/2 という有理数がこの列の中に出てこないので.
この回答への補足
回答ありがとうございます。
その1対1対応というのはしらないので勉強します。
No5の補足に書いた証明で有理数n/mを新たにcと置き同様の証明ができるならそれは無限にあるとは言えませんか?
よろしくおねがいします。
No.7
- 回答日時:
あ~, 「|a-b| < ε を満たす a, b による開区間 (a, b) に有理数が存在する」というのは OK なのか? a = b でも |a-b| < ε だよなぁ....
不等号を逆にして b-a > ε であれば (a, b) に有理数が存在することは OK だけど, 「2つの異なる区間 (a1, b1), (a2, b2) から*異なる*有理数を見付けることができる」という証明が別途必要じゃないかな?
「無限にある」ことを証明するなら... 思い付く方法は「ある無限集合と 1対1 に対応づけることのできる集合をもってくる」か, 「有限と仮定して背理法」かの 2つ.
この回答への補足
なるほど。
異なる有理数についての言及がないから、無限に数えていたものが実はおんなじ有理数を数えていた みたいなことも起こりかねませんね。
その別途の証明を必死に考えているんですが・・・。
No.5
- 回答日時:
>実際有理数の証明はできたのですが、無理数の証明ができません。
こっちはヒント「有理数と無理数の和が無理数になることを利用する」を使ってどうぞ。
既に (a, b) には無限に有理数があることがわかっているんですよね?
この回答への補足
>既に (a, b) には無限に有理数があることがわかっているんですよね?
略解ですが、
実数の任意の開区間として、a<X<bを考えて
アルキメデスの原理より、m(b-a)>1 となる自然数mがある。このとき、n-1≦ma<n となる自然数n がある。よって、
a<n/m≦a+1/m<b が成り立ち、有理数n/m が存在する。
この解答で有理数は示せたと思っていましたが、勘違いでしょうか?
No.3
- 回答日時:
>有理数の稠密性はわかっているものとして、よろしくお願いします。
ではその「わかっている」内容を補足にどうぞ。
この回答への補足
>ではその「わかっている」内容を補足にどうぞ。
わかりました。
x>0として考えると、アルキメデスの原理を利用して、ある自然数nと任意のεについて、1/n<εが成立する。
このnに対してアルキメデスの原理からある自然数mでm/n>xとなるものがある。ここでそのようなmのうち最小のものをもってきて
p=m/nとすると|x-p|<εとできる。
これで任意の実数xと任意の正の数εに対してある有理数pで
|x-p|<εなるpが存在します。
この有理数の稠密性は理解できます。
実際有理数の証明はできたのですが、無理数の証明ができません。
アルキメデスの原理も理解しているものとしていいです。
アルキメデスの原理の証明を補足に書いてくださいと言われていてはキリがないので・・・。
あと最小のmが存在することも分かっているものとしていいです。
長くなりました。すいません。
お願いします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 無理数の数字の組み合わせ。無限の意味について 5 2022/05/28 22:53
- 数学 これって正しいんじゃないの? 「無理数を小数で表現すると、小数点以下に数字が無限に続きますが、それら 5 2022/05/29 23:56
- 数学 0でも無限でもない。 4 2023/04/22 19:12
- 数学 無理数には、任意の有限個の数列が必ず含まれるのでしょうか 3 2022/10/25 17:11
- 数学 ある無理数に限りなく近い有理数は無理数ですか、有理数ですか。 13 2023/01/31 11:18
- 数学 無理数と有理数について 6 2023/04/28 11:16
- 数学 『確率の問題』 2 2023/05/24 20:32
- 数学 p²+q²=1を満たす有限小数 10 2023/03/11 13:35
- 物理学 宇宙は無限か有限か? 4 2023/05/28 13:35
- 数学 三角関数が有理数のものを教えてください。 4 2023/02/24 17:29
このQ&Aを見た人はこんなQ&Aも見ています
-
【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
【お題】 ・存在しそうで存在しないモノマネ芸人の名前を教えてください
-
【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
2024年は「名探偵コナン30周年」「涼宮ハルヒ20周年」などを迎えますが、 あなたが「もうそんなに!?」と驚いた○○周年を教えてください。
-
ホテルを選ぶとき、これだけは譲れない条件TOP3は?
ホテルを探す時、予約サイトで希望条件の絞り込みができる便利な世の中。 あなたは宿泊先を決めるとき「これだけは譲れない」と思う条件TOP3を教えてください。
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
好きな和訳タイトルを教えてください
洋書・洋画の素敵な和訳タイトルをたくさん知りたいです!【例】 『Wuthering Heights』→『嵐が丘』
-
e^2xのマクローリン展開を求めたいです
数学
-
実数の個数は無限個?
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
素数の性質
-
数学の「証明」のときなどの接...
-
よって・ゆえに・したがって・∴...
-
(4^n)-1が3の倍数であることの...
-
中学校の2年生に仮定と結論を...
-
喪中はがきについて~娘の夫が...
-
再婚を考えてますが、養子縁組...
-
lim(n→∞)an=-∞ の時、lim(n→∞)...
-
「証明証」と「証明書」はどう...
-
素数の積に1を加算すると素数で...
-
婿養子に入ったのに出て行けと...
-
夫が亡くなった後の義理家族と...
-
47歳、母親の再婚を子供の立場...
-
証明終了の記号。
-
非該当証明書と該非判定書とい...
-
婿養子です、妻と離婚して妻の...
-
『弧は弦より長し』
-
無理数って二乗しても有理数に...
-
結婚して1か月して、初めて主...
-
rankに関する証明問題です。
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
素数の積に1を加算すると素数で...
-
素数の性質
-
数学の「証明」のときなどの接...
-
数学の証明問題で、「証明終了」...
-
証明終了の記号。
-
(4^n)-1が3の倍数であることの...
-
3,4,7,8を使って10を作る
-
よって・ゆえに・したがって・∴...
-
親の再婚相手との問題です。私...
-
「証明証」と「証明書」はどう...
-
47歳、母親の再婚を子供の立場...
-
正解が一つとは限らない数学の...
-
兄弟の子どもの養子縁組は可能...
-
夫が亡くなった後の義理家族と...
-
婿養子です、妻と離婚して妻の...
-
婿養子に入ったのに出て行けと...
-
喪中はがきについて~娘の夫が...
-
無理数って二乗しても有理数に...
-
実息とは?
-
直角三角形の性質
おすすめ情報