漫画『酒男子』のAIボットを作ると高級日本酒が当たる!! >>

例えば、2-シクロヘキセノンにクプラートと有機リチウム試薬をそれぞれ反応させた時、クプラートが1,4付加物を与え、有機リチウムが1,2付加物を与えるのはどうしてでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (2件)

No1のご回答のHSAB(Hard-Soft Acid-Base)則に因る説明を理解するには少し予備知識が必要です。


そこで、古典的な有機化学の考え方で説明しようと思います;
1:カルボニル基への求核付加はエネルギー的に望ましくは無い。理由は、カルボニル基の炭素がsp2(120度)から立体的に込み合ったsp3(109.5度)に変るから。
2:電気陰性度の差が大きいほどイオン結合性が増し求核攻撃を起こしやすい。
と言う、上記2つの理由で考えてみる事にします。
電気陰性度については、
Li:1.0
C:2,5
Cu:1.8
C-Li=1.5
C-Cu=0.7
RLiはイオン結合性が強いので、カルボニル基に直接求核付加しsp2からsp3になる不利益を補うほど反応性が強い。
一方、R2CuLiは、いくぶん共有結合性が強いので、カルボニル基への求核付加の力は弱く、Michael付加反応が優先する。
以上の説明で如何でしょうか。
    • good
    • 0
この回答へのお礼

なるほど、イオン結合性に着目するわけですね!!納得できました、ありがとうございます。それにHSAB則というのもあるんですね。

お礼日時:2008/07/27 01:06

TSの構造が違うからです。



有機リチウム試薬は2量体で反応するのですが、両方が同じ金属かつハードなメタルなので2つのLiがカルボニルのOにたかるようなTSをとります。するとアルキル基はカルボニルの根元のCにしか近づけません。

キュプラートは通常片方がソフトなCu、もう片方がハードなLi、Mgであるので、LiがハードなカルボニルのOにたかり、Cuがソフトな二重結合に近づくようなTSをとります。この場合アルキル基はβ位の炭素に近づきます。
    • good
    • 0
この回答へのお礼

なんとなく流れはわかったんですが、ハードなメタル、ソフトなメタルとはどうゆうことなんでしょうか?

お礼日時:2008/07/26 01:16

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q共役ジエンの1,2付加と1,4付加について

高温条件下では、1,4付加が起きて熱力学的支配、低温条件化では、1,2付加が起きて速度論的支配とありますが、意味がよく分かりません。是非教えてください。

Aベストアンサー

「高温条件下では熱力学的支配」で「低温条件化では速度論的支配」は共役ジエンへの付加反応に限った事ではありません。

 で,それぞれどういった意味かを先ず簡単に書いて置きます。

【熱力学的支配の反応】
 より安定な生成物が生成する反応

【速度論的支配の反応】
 より安定な遷移状態を経由する生成物が生成する反応

 もう少し具体的に述べます。低温では供給される熱エネルギーが少ないため,大きな活性化エネルギーを必要とする反応(つまり,不安定で高エネルギー状態の遷移状態を経由する反応)は進みにくく,結果的に安定な遷移状態を経由する生成物が主として得られます。

 遷移状態に至るエネルギーが低いほど反応は起こり易い(反応速度が速い)ですから,安定な遷移状態を経由する反応を「速度論的支配の反応」と言います。

 一方,高温では充分な活性化エネルギーが供給されるため,高エネルギー状態の遷移状態を経由する反応も可能になります。平衡反応でどちらの経路も可能になった場合,より安定な生成物が主として得られます。

 この場合,どの生成物が主として得られるかは,生成物の熱力学的な安定性によりますから「熱力学的支配の反応」と言います。

 お書きの「共役ジエンの1,2付加と1,4付加」で説明しましょう。#1 さんがお書きの「1,3-ブタジエンへのHClの付加」で説明します。

 まず,両反応の遷移状態は次の様になります。

  1,2付加: CH2=CH-CH(+)-CH3
  1,4付加: CH2(+)-CH=CH-CH3

 ここで両遷移状態のカチオンの安定性を考えると,2級カチオンである「1,2付加」の遷移状態の方が1級カチオンを与える「1,4付加」の遷移状態よりも安定だと考えられます。

 つまり,「1,2付加」の遷移状態の方が到達しやすく,低温でも必要な活性化エネルギーが供給されるために,低温での反応では「1,2付加体」が主として生成します。

 一方,両反応での生成物は次の様になり,「1,4付加体」の方が電子供与性のアルキル置換基が多い内部オレフィンを有するため安定になります。

  1,2付加: CH2=CH-CHCl-CH3
  1,4付加: CH2Cl-CH=CH-CH3

 結果,両反応が可能な高温での反応では「1,4付加体」が主として生成します。

 反応は異なりますが,こちらの説明と図15も参考にしてみて下さい。

 ・http://www.geocities.jp/junk2515/chem2/chem2_15.htm
  <速度論支配と熱力学支配>

参考URL:http://www.geocities.jp/junk2515/chem2/chem2_15.htm

「高温条件下では熱力学的支配」で「低温条件化では速度論的支配」は共役ジエンへの付加反応に限った事ではありません。

 で,それぞれどういった意味かを先ず簡単に書いて置きます。

【熱力学的支配の反応】
 より安定な生成物が生成する反応

【速度論的支配の反応】
 より安定な遷移状態を経由する生成物が生成する反応

 もう少し具体的に述べます。低温では供給される熱エネルギーが少ないため,大きな活性化エネルギーを必要とする反応(つまり,不安定で高エネルギー状態の遷移状態を経由...続きを読む

Q1,4-付加?

マイケル付加は1,4付加ですか?
αβで1,2付加じゃないんですか?

Aベストアンサー

1,4-付加体を経由して1,2-付加体を与えるか、直接1,2-付加体を与えるかについては、付加する側の塩基性やカウンターカチオンも関係すると思います。
そこで、そういったややこしい問題を回避し、かつ、カルボニル基への「1,2-付加」と区別するために、習慣的に1,4-付加、Michael付加、共役付加等の言葉をもちいているという意味です。それが常に、現実の反応機構を反映しているとは限りません。しかも、Michael付加というのは時としてかなり広範囲に用いられ、受容体側もカルボニル化合物とは限りませんので、「習慣的」な色彩が強いと思います。

ちなみに、エノンに、有機金属化合物を加え、それにクロロトリメチルシランを加えれば、通常、1,4-付加体(シリルエノールエーテル)が得られます。1,2-付加体と1,4-付加体のどちらが得られるかに関しては、付加体のカチオン側(たとえば、H+であるかLi+であるか、TMS+であるかなど)の性質にも関係します。このことは、通常、HSAB則(Hard and Soft, acids and bases principle)によって説明されます。

また、モリソンボイドに関してもチェックしましたが、ケトとエノールの両方が生成するが、より安定なケト型に収束するという主旨で書かれていると思います(版が違うかもしれませんが)。

1,4-付加体を経由して1,2-付加体を与えるか、直接1,2-付加体を与えるかについては、付加する側の塩基性やカウンターカチオンも関係すると思います。
そこで、そういったややこしい問題を回避し、かつ、カルボニル基への「1,2-付加」と区別するために、習慣的に1,4-付加、Michael付加、共役付加等の言葉をもちいているという意味です。それが常に、現実の反応機構を反映しているとは限りません。しかも、Michael付加というのは時としてかなり広範囲に用いられ、受容体側もカルボニル化合物とは限りませんので、「...続きを読む

QROHとPBr3の反応

ROH+PBr3→RBrの反応はどのような反応なのでしょうか。
できれば、どのように進むのか教えてください。
調べようと思ったのですが、どの分野を調べればいいかわからないので、
それだけでもいいですから、お願いします。

Aベストアンサー

普通は有機化学の教科書で、アルコールからハロゲン化アルキルの合成法として説明されていることが多いと思います。
有機化学の教科書のアルコールのところを見れば説明があると思います。
R-OH + PBr3 → R-O-PBr2 + HBr
を経由して進む反応だと思います。ただし、そこから先は反応条件によって違うようで、必ずしもハッキリしませんが、分子内的に反応が進んで、
R-O-PBr2 → R-Br (+ O=P-Br):この部分は怪しい
といった感じになったと思います。

QW/V%とは?

オキシドールの成分に 過酸化水素(H2O2)2.5~3.5W/V%含有と記載されています。W/V%の意味が分かりません。W%なら重量パーセント、V%なら体積パーセントだと思いますがW/V%はどのような割合を示すのでしょうか。どなたか教えていただけないでしょうか。よろしくお願いいたします。

Aベストアンサー

w/v%とは、weight/volume%のことで、2.5~3.5w/v%とは、100ml中に2.5~3.5gの過酸化水素が含有されているということです。
つまり、全溶液100ml中に何gの薬液が溶けているか?
ということです。
w/v%のwはg(グラム)でvは100mlです。

Q-C三N結合(ニトリル結合)は電子求引基?

-C三N結合(ニトリル結合)の反応を考えています。
電子陰性度から考えれば電子はNに引っ張られて炭素がプラスになり、水酸化イオンなどの電子供与基と反応するという考え方はあっていますか?
あるいは窒素の不対電子+炭素との電子陰性度の違いからくる三重結合の電子から窒素が電子供与基になってなにか電子求引基のH+とかと反応するのですか?
考え方の過程も知りたいので思ったことを教えて下さい。

Aベストアンサー

-CN置換基は電子求引性であり、そのため、たとえばCH3CNの酸性度はメタンよりも強くなります。本来、「電子求引性」と言った場合には上記の議論になります。
しかし、ご質問内容は、そういうことではなさそうですね。つまり、ご質問内容というのはCNの電子求引性とは別の問題であるということです。そのことをまずはっきりさせておく必要があると思います。
その上での議論として、質問文で書かれた内容はおおむね妥当であると思います。
すなわち、CNにおいて、Cは正電荷を持ちNは負電荷を持っていると考えるのは妥当です。結果的に求核剤はCを攻撃し、求電子剤はNを攻撃します。要は、CNにおいては反応点が2か所あるということと、正電荷と負電荷の間で反応が起こるという極めてシンプルな考え方で説明できます。

なお、科学において専門用語の使用法というのは重要です。水酸化物イオンを電子供与基とは呼びませんし、CNのなかのNを取り出して電子供与基といったりはしません。

Qヤーンテラー効果について

ヤーンテラー効果について勉強したのですがよく分かりません。もし分かりやすく説明してくれる方がいればよろしくお願いします。

Aベストアンサー

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四面体配位は例が少ないので省略します).例えば,Fe錯体なんかはたいてい八面体配位(配位子が6個)って教わりましたね.しかし,Cu錯体やPt錯体などはなぜか正方形の配位をとります.本来であれば,八面体配位をとったほうがよさそうな感じがしますよね.だって,FeとCuって電子が3つしか違わないから.

ここで,Jahn-Teller効果にもとづく正方晶ひずみという効果が生じてきます.これって何かというと,z軸方向の配位距離(金属と配位子との距離)が伸び,xy方向の配位距離が縮まるのです.つまり,八面体を横からグシャッとつぶして縦にビヨーンと引っ張った感じになります.

このような傾向は,d軌道の電子が多いほど起こりやすくなります.
こうやって,もしもz軸方向の配位距離が無限に伸びてしまったら?そう,z軸方向の配位子はどっかに飛んでいってしまい,結果として正方形状に並んだ4つの配位子だけが残ります.

つまり,「Cu錯体が正方形配位であるのは,八面体がひずんでz軸方向の配位子がなくなったからである」といえましょう.


しかし,「なんでd軌道の電子が増えるとz軸方向に伸びるの?」と思われますよね.これは電子軌道理論で説明できます.
八面体のときは,d軌道は3:2に分裂してますよね.低エネルギーで縮退している3軌道はdxy,dyz,dzxで,高エネルギーのそれはd(xx-yy),dzzです.さて,d軌道の電子が増えると,実は二重および三重に縮退していた軌道が分裂して,2:1:1:1とこま切れになってしまいます.具体的には,z因子を含む軌道(dyz,dzx,dzz)の3つのエネルギーが低下します.(なんでそうなるのかについてはムズカシイので省略させてください)


う~ん,なにやらムズカシイお話になってしまいましたね.
でも,「d軌道の縮退が変化する=配位の形も変化する」ということはなんとなく予想できますよね.これを理論的に説明したのがJahn-Teller効果です.


こんな稚拙な説明でわかっていただけたでしょうか.
もし,「この文章のここがよくわからない」などがありましたら,補足をお願いいたします.また,これ以上の内容についてはShriver(シュライバー)著『無機化学』p.354あたりに書いてあるので,そちらをご覧ください.

Jahn-Teller効果ですか.むずかしいですよね~.ということで,「わかりやすく,イメージをつかむ」というのをモットーに(!?),ここではJahn-Teller効果の一例である「正方晶ひずみ」のお話をします.


正方晶ひずみをチョー簡単に言ってしまえば,
「Cu錯体がなぜ正方形配位型なのか」
を説明したものなのです.

じゃあ,なんでそうなるのっ?(古っ!)って思いますよね.そこで,結晶場理論をもとにこれを説明します.


そもそも,d錯体って,八面体配位であるか,四面体配位ですよね(ただ,四...続きを読む

Qピリジンが弱塩基である理由

講義で
「ピリジンの塩基性が一般のアミンに比べて低いのはなぜか」
と問われました。そこで私は
「アルキル基から窒素へ電子が押し出されカチオンを安定化するためアミンの方が塩基性が高い」
と答えたのですが
「間違いではないがそれではアミンの塩基性が高い理由に過ぎない」
とあっさりつき返されてしまいました。

答えを知りたく、講義が終わってから質問に行ったところ、
“窒素上の孤立電子対”“s性”というヒントだけ頂けました。
が、s性と聞いても“電子がs軌道上にいる割合”というイメージしかなく、
ピリジンの塩基性とのつながりが良く分かりません。

どなたか、ご教授いただけないでしょうか。
よろしくお願いします。

Aベストアンサー

脂肪族アミンがアンモニウムになると、Nの混成はsp3になるのに対して、ピリジンがアンモニウムになったピリジニウムの場合には、Nの混成はsp2になります。

たとえば、sp2混成のエチレンとsp3混成のエタンとを比較した場合に、前者の方が強い酸であることはご存じですよね?
そのことからも類推できますように(というか、それと同様の理由によって)sp2混成であるピリジニウムの方が強い酸であるということになります。
これは、裏を返せばピリジンの方が弱い塩基であるというのと同じ意味になります(ブレンステッド-ローリーの酸塩基の定義を思い出して下さい)。

それでは、なぜ、エチレンの方がエタンよりも強い酸であるかということは、s軌道の方がp軌道よりも小さいために、原子核の近いところで強く引きつけられているからであると説明されます。つまり、s性の大きい軌道(ここではsp2)の方が、電子対が中心原子に強く引きつけられており、結果的にH+を放出しやすくなり強い酸になるということです。

・・・少し難しかったでしょうか?

Qグリニャール試薬の取り扱いについて

今、実験でグリニャール試薬(CH3MgBr)を使おうとしているのですが、グリニャール試薬を扱うのは初めてなため取り扱いについてなにも知りません。
グリニャール反応は禁水性と聞きますが、グリニャール試薬も同様に禁水性なのでしょうか?窒素雰囲気下などで扱うべきものなのでしょうか?また、論文によっては「何度以下で反応」などと書かれている場合があるのですが、論文によって温度がまちまちなのですが、目安はあるのでしょうか?

長くなって申し訳ありません。ご存知の方いらっしゃいましたらよろしくお願いします。

Aベストアンサー

クロロベンゼンは反応しませんよ。
グリニャール試薬とArXのハロゲンー金属交換は、Xがヨウ素の場合を除き遅く、塩素でしかもグリニャール試薬がアリールグリニャールなら反応しません。
めちゃくちゃ加熱するとか、活性を上げる添加剤を入れれば分かりませんが、質問者さんの感じからすると特殊な反応をやるわけでは無さそうなので大丈夫でしょう。

保存方法というのは、グリニャール試薬のでしょうか。
密封および不活性雰囲気置換の可能な容器(シュレンクチューブ、シュレンクフラスコが望ましい)に不活性雰囲気下で移し、密封して保存します。
グリニャール試薬は熱的にはかなり安定なので、室温でおいておいても大丈夫ではありますが、冷蔵庫に入れておく方が良いでしょう。エーテル溶媒だと内圧上昇の危険もありますし。

Q求核剤の反応性の強さの指標について

塩基性については、電子の共鳴などでどの塩基が強いなどはわかるのですが、求核性に関してはよくわかりません。

塩基性と求核性には、関連性がないみたいなのですが、求核性に関して、強さの理由みたいなものはないのでしょうか?

Aベストアンサー

求核性に関しては、通常、求核置換反応の速度によって比較します。
一般論として、求核性を判断する際の検討要因はいくつかあります。

まず、同一族の元素(たとえば、I-とBr-とCl-など)の比較であれば、原子番号の大きい方が求核性が大きくなります。
すなわち、I->Br->Cl->F-あるいはHS->OH-などです。

次に、同種の原子が求核性を示す場合には、より大きな負電荷を有するものの方が求核性は大きくなります。たとえば、OH-はH2Oよりも強い求核剤です。それは酸素原子上の電荷の違いによるものと説明出来ます。

また、ご質問にある塩基性に関しては、同じ種類の原子の求核性を比較するのであれば、強塩基であるほど求核性も大きくなります。たとえば、アルコキシドはフェノキシドよりも強い求核剤であり、フェノキシドはカルボキシラートよりも強い求核剤です。上述の、H2OとOH-の求核性の違いについても同じ考え方が適用できます。

また、これら以外に立体的な要因で求核性が小さくなる場合もあります。たとえば、tert-ブトキシドなどはその例です。

現実問題として上述以外の比較であれば、データ集を見るなどのことをする必要はありますが、こうした内容だけでもかなりのことがわかります。

ついでにHSAB則のことですが、これに関して過大に意識することは無意味です。反応点が2カ所あるものの反応であれば、HSAB則の考え方は重要ですが、そういう事態は一般的とはいえないでしょうし、ご質問の主旨からも外れてるでしょう。

求核性に関しては、通常、求核置換反応の速度によって比較します。
一般論として、求核性を判断する際の検討要因はいくつかあります。

まず、同一族の元素(たとえば、I-とBr-とCl-など)の比較であれば、原子番号の大きい方が求核性が大きくなります。
すなわち、I->Br->Cl->F-あるいはHS->OH-などです。

次に、同種の原子が求核性を示す場合には、より大きな負電荷を有するものの方が求核性は大きくなります。たとえば、OH-はH2Oよりも強い求核剤です。それは酸素原子上の電荷の違いによるものと説明出...続きを読む

QBF3・Et2Oについて

BF3・Et2O(トリフッ化ジエチルエーテル錯体)を酸触媒として使おうと思っています。この触媒は他の酸触媒(H2SO4やp-TsOH)と比べてマイルドな触媒と言えるのでしょうか?その他知っていることがあれば教えていただけないでしょうか?よろしくお願いします。

Aベストアンサー

そもそもこれはLewis酸であるので、H2SO4などのブレンステッド酸と強弱を比較することに意味があるとは思えません。
強いて比較するならばAlCl3などが相手になるでしょうが、Lewis酸の強弱の比較は難しいです。まあ、常識的な判断としては、弱い部類ではないでしょうけどね。

それと化合物の名前が変です。トリフッ化という言い方はしません、トリフルオロとすべきでしょう。また、この化合物に関しては、三フッ化ホウ素ジエチルエーテル錯体と呼ぶべきでしょう。
蛇足になるかもしれませんが、BF3・OEt2と書く方が好ましいと思います。細かいこととお思いでしょうが、この物質においてLewis酸性を示すのはBF3であり、そのBとOの間に配位結合があります。こういったことを理解していれば、BF3・OEt2と書くはずであり、多くの本ではこう書かれているはずです。Lewis酸とブレンステッド酸の区別の問題も含めて、これらの基礎的なことを押さえておく必要があると思います。そうでなければまともな考察はできません。


人気Q&Aランキング