A 回答 (4件)
- 最新から表示
- 回答順に表示
No.4
- 回答日時:
この回答で最後とさせていただきます。
ちょっと、訂正させていただきます。No2さんの方法では、「全エネルギーが時間に依存せずに一定であることを示すことが難しい」と書きましたが、弦の横波は定常波u=Asin(kx)cos(ωt)になりますよね。これで、計算すれば、全エネルギーは常時一定に保たれます。そうすると、No2さんの方法で良いということになります。ただし、No2さんは「弦が縮むことはない」とおっしゃっていますが、実際は弦が伸び縮みすることによって、全エネルギーが一定に保たれるのです。
>(1/2)*T*(dx/du)^2Δxとなりましたが、正解なんでしょうか。
uは変位ですね。だったら、dx/duが上下反対です。そして偏微分でなければなりません。(1/2)*T*(∂u/∂x)^2Δxとなりますね。これが正しいかどうかは(実際、正しいのですが)、運動エネルギーも計算して、全エネルギーが一定に保たれることを確認して下さい。方法は、定常波の基本振動u=Asin(kx)cos(ωt)の場合について確認すればよいでしょう。
No.3
- 回答日時:
>2時間ほど考えてみましたが
2時間ほど、何を考えましたか。
考え方として、No2さんの方法もあります。この方法では運動エネルギーと位置エネルギーが等しくなります。しかし、それだと、全エネルーが時間の関数として導かれますので、全エネルギーが常に(時間に依存せずに)一定であることを示すことが難しいですね。やはり、考え方の基本は、位置エネルギーが保存力であることを要請するものでなければなりません。x方向の伸びは無視して、dxについてy方向の変位のみを考えればいいと思いますが、どうでしょうか。このようにすれば、全エネルギーが常時一定に保たれます。
この回答への補足
上記の解答は出先から携帯での投稿でしたので、
もう一度最初から計算してみました。
横にx軸、縦にy軸をとり、弦がy軸方向に振動しているとする。
位置エネルギーをU、
弦の張力をS、長さをl、伸びをΔlとすると、
√{(Δx)^2(Δy^2)}より
U=SΔl=S∫[0→l]{√(1+(δy/δx)^2)-1}dx≒S/2∫[0→l](δy/δx)^2dx
以上なんですが、いかかでしょうか。
間違いや補足等あればお願いいたします。
ojisan7さんのヒントを参考に計算したところ、
(1/2)*T*(dx/du)^2Δx
となりましたが、正解なんでしょうか。
中間試験の問題だったんで、解答はもらえないみたいです…。よろしくお願いします。
No.2
- 回答日時:
弦は振動していないときには、まっすぐ直線だったのが、振動しているってことは、弦が直線以外の形(正弦波など)になっているわけです。
ある2点を結ぶ最短の曲線は直線ですから、直線以外の形になっているってことは、弦が伸びたわけです。弦を伸びせば、位置エネルギーがたまるでしょう。それを求めろ、ってことです。
ただし、弦の伸び方は、場所によって一定ではなくて、微視的に見ると、すごく伸びているところと、あんまり伸びていないところがあるでしょうから(弦なんで縮むことはない)、微小区間ごとに伸びぐあいを考えて位置エネルギーを考えた後、そいつらをみんな足し算(実際には積分しろ)ってことです。
弦の振動を考えるときに、弦の微少区間を考えて、運動方程式を立てたはずです。
そのときに書いた図を見ながら、微小区間での弦の伸びを考えればよいです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
深夜に使う電マの振動ってどの...
-
振動周波数について詳しい方お...
-
共鳴・共振・うなりの違いは?
-
パワースペクトル密度を加速度...
-
隣人のセックスの振動で困って...
-
音響モード・光学モード
-
振動でパソコンがフリーズして...
-
偏光の現象
-
振動単位dBをmm/sに変換可能か
-
振動計のピーク値と実効値につ...
-
物が勝手に落ちるんです。 なん...
-
スマホって振っても壊れないん...
-
フットバスの騒音に困っていま...
-
弦に固有振動数以外の振動数の...
-
弦の固定振動について実験しま...
-
FFTを行った後の周波数応答が実...
-
回転体 アンバランス量(回転...
-
物理の波の問題です
-
単振動について質問です。 変な...
-
共鳴音叉はなぜ共鳴するのでし...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報