【iOS版アプリ】不具合のお知らせ

統計力学のある問題で分配関数を求めたとき、粒子は区別出来ないという設定だったので全粒子数Nの階乗で割るという操作をしていました。

N個の粒子の並べ方/N!=N個の粒子の組み合わせ

ということは理解できるのですが、

粒子を区別する分配関数/N!=粒子を区別しない分配関数

となるのはいまいち理解出来ません。この辺についての解説をよろしくお願いします。

A 回答 (1件)

例えば2粒子系で1次元。



「粒子を区別する時の分配関数」は
Z∝∫dx_1 dx_2 dp_1 dp_2 exp(-βH)
という感じの形になっているはずです。

積分範囲はいずれの文字についても-∞から∞です。

しかし、このような積分範囲だと
(x_1, p_1) = (α, β) かつ (x_2, p_2) = (γ, δ)
(x_1, p_1) = (γ, δ) かつ (x_2, p_2) = (α, β)
の両方を積分区間に含んでいる事になります。(α,β)≠(γ,δ)とします。

しかし、この2つは同じ状態なので、積分区間に入れるのはどちらか一方でなければいけません。
片方しか含まないように積分区間を変更する(例えば積分範囲をx_1 < x_2とする)のでもいいのですが、よーく考えれば2(=2!)で割るだけで良い(x_1<x_2上の積分とx_1>x_2上の積分が等しいので)事が分かるはずです。

同じことをN粒子系で考えればN!で割る事になります。
    • good
    • 0
この回答へのお礼

自己解決しました。同じ状態をとる粒子が少ないことがポイントでした。

お礼日時:2010/03/07 12:39

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


人気Q&Aランキング