
No.1ベストアンサー
- 回答日時:
こんばんわ。
∫(t f(t))dt[0,1]は、tの関数を 0≦ t≦ 1で積分するわけですから「定数」になりますね。
f(x)という関数全体でみれば、それは「定数項」になるということです。
この回答への補足
回答ありがとうございます。
ヒントの意味なんとか理解できました。
∫tf(t)dt[0,1]
=∫(t^2/2)'f(t)dt[0,1]
=[t^2/2f(t)][0,1] - ∫(3t^2/2)dt[0,1]
=(f(1)-1)/2
またf(1)=3-∫tf(t)dt[0,1]より
∫tf(t)dt[0,1]=2/3
f(x)=3x-2/3
計算間違ってるかもしれませんが
大まかにはこれであってますよね。
ありがとうございます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 大学数学 解析学 区間[a,b]で有界な関数f(x)が[a,b)で連続であるとき、f(x)は[a,b 2 2022/12/23 04:04
- 数学 微分積分のn次関数についての問題がわからないです。 1 2023/01/08 13:37
- 数学 原始関数の存在性の証明について 数学科の3回生です。院試の勉強でつまづいたので助けてほしいです。 R 6 2022/11/13 19:19
- 数学 f(x)=2x+∮(0~1)(x+t)f(t)dt を満たす関数f(x)を求めよ。 3 2022/07/05 22:54
- 数学 「f(x)とg(x)のグラフで囲まれた面積を求めよ」 という積分の面積を求める典型問題がありますが、 7 2023/06/09 01:16
- 高校 (2)の問題なのですが、関数f xを最小にする、なのに積分をするのはtというのに少し困惑しているので 1 2022/07/17 12:56
- 数学 グラフで囲まれた面積を求める問題で 区間a〜b(a<b)で定積分∫f(x)-g(x)dx=-aと負の 3 2023/02/08 23:05
- 数学 微分積分についての問題がわからない です。 3 2022/08/08 15:13
- 数学 R上の実数値連続関数fが周期pを持つならば次式か成り立つことを示せ。 ∫[x→x+p] f(t)dt 2 2022/09/13 10:38
- 数学 f(x) を周期 T >0 の周期関数とするとき ∫(0~x)f(t)dt が周期 T >0の周期関 2 2022/12/13 18:21
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
"交わる"と"接する"の定義
-
f(x) g(x) とは?
-
微分について
-
統計学
-
数学の f(f(x))とはどういう意...
-
関数 f(x) = e^(2x) につい...
-
eのx乗はeのx乗のまんまなのに...
-
数学 fとf(x) の違いについて
-
αを代数的数とし、f(x)⊂Z[x]を...
-
lim[x→0] x/(e^x-1) を計算する...
-
数学 定積分の問題です。 関数f...
-
楕円積分
-
Henselの補題の証明で質問です。
-
次の等式を満たす関数f(x)を求...
-
左上図、左下図、右上図、右下...
-
数1 2つの二次関数の大小関係 ...
-
複素関数f(z)のテーラー展開や...
-
数学Ⅱの問題です。 解説お願い...
-
剰余の定理
-
関数方程式 未知関数
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学の f(f(x))とはどういう意...
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
差分表現とは何でしょうか? 問...
-
微分について
-
【数3 式と曲線】 F(x、y)=0と...
-
数学の記法について。 Wikipedi...
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
三次関数が三重解を持つ条件とは?
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
問431,不等式x⁴-4x³+28>0を証...
-
関数が単調増加かどうか調べる...
-
なんで(4)なんですけど 積分定...
-
関数方程式f(x)=f(2x)の解き方...
-
積分する前のインテグラルの中...
-
どんな式でも偶関数か奇関数の...
おすすめ情報