ママのスキンケアのお悩みにおすすめアイテム

発光強度について

波長を横軸に、発光強度を縦軸にして、赤色発光ダイオードの発光強度-波長特性、を測定しました。
しかし、発光強度はどういう計算式なのかが分りません。
その前に、赤色発光ダイオードの電流-電圧特性、を測定しました。
また、発光ダイオードの輝度-電流特性、も測定しました。
発光強度の単位は、nw(ナノワット)なので、電圧と電流を掛ければいいのかなと思いましたが、違うでしょうか?

お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

まず、光デバイスの発光強度は、光パワーメータなどの測定機器を用いて計測するのが普通であると思われますので、「計算式」というのがまず疑問です。

少なくとも、発光スペクトルでわかる発光に関するデータは、光強度(任意目盛=arbitrary units)と半値全幅(FWHM)の積で求められる面積を、光強度が既知のLEDのそれと比較するなどしないと求められないのではないでしょうか。

また、LEDにももちろん熱損失があります(でなければ、市販のLED電球にあんな大きな放熱フィンはいりません)。ですから、電圧と電流の積で求まるのは消費電力であって、光のパワーそのものではないですよ。
    • good
    • 0
この回答へのお礼

わかりました。
ありがとうございました。

お礼日時:2010/10/27 23:59

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q発光強度の単位は

分光計測器で分光分布の波形を得ました。グラフの横軸は波長で、
単位は[nm]なんですが、縦軸の発光強度の単位が解らないので質
問しました。よろしくお願いします。

Aベストアンサー

一般的に単位はありません。
吸光、蛍光、フォトン数など濃度に対する相対強度
ですので表示するのであれば、強度(intensity)でしょう。

Qスペクトル強度について

スペクトル強度とはそもそも物理学的にどういう意味があるんですか?エネルギーや発光強度とは違いますよね。

また、調べたところ、スペクトル強度の大小には、遷移確率が関係しているとのことでしたが、具体的になぜ遷移確率が関係してくるのか分かりません。

大学2年生ですが、できるだけ分かりやすい言葉でお願いします。

Aベストアンサー

他の方への補足に代わりにお答えすると、たとえば「光エレクトロニクスの基礎」(AMNON YARIV,丸善)とかレーザー物理入門(霜田光一、岩波)などを見るとよいでしょう。
量子力学が関係しますので、大学2年だと完全に理解するのはちょっと難しいかもしれませんが、大学後期程度では必要になる知識ですし、また両著者共に光学分野ではきわめて著名な人ですから、特に光エレクトロニクスの基礎は今後光学を専門とするのであれば、ぜひ一冊は持っておいて欲しい本です。

ポピュレーションとはその準位の原子数の事を指します。
アインシュタインA係数は、上位から下位に自然放出する確率係数です。
この係数の厳密な導出は第二量子化(光量子を扱う)が必要なので学部では、導出されたものとして扱うのが普通です。

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q吸光度?蛍光強度?励起強度?

いま研究で蛍光測定の実験を行おうと思っているんですが、
吸光度と励起強度と蛍光強度
が頭の中でごちゃ混ぜになってしまい、いまいち理解できません。
どうか、分かりやすい説明できる方がいらしたらぜひお願いいたします。

Aベストアンサー

No.1です。補足しますと、
・測定対象に当てる光(多分、紫外線)の強さが励起強度
・測定対象に当てた光の強さと反射(あるいは透過)して戻ってきた光の強さの差分(つまり測定対象に吸収された光の強さ)を、当てた光の強さで割ったものが吸光度
・測定対象に光を当てたことにより発した蛍光の強さが蛍光強度

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q蛍光スペクトル

蛍光スペクトルと励起スペクトルについて教えてください

励起光の波長を変化させて蛍光の波長を固定して測定したものが励起スペクトルで、励起光を固定して蛍光の波長を測定したものが蛍光スペクトルだというのはわかるのですが、2つがどういうものかということがよくわかりません。

教科書のスペクトルと見ると、横軸は波数で蛍光の波長だと、わかるのですが、励起光の波長はどこに表されているのでしょうか?

またどうして励起スペクトルと蛍光スペクトルが鏡像関係にあるのかもわかりません。

あまり難しい言葉や数式は使わずわかりやすく回答してもらえれば幸いです。

Aベストアンサー

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギーの低い状態へ移動する)を経て励起状態振動基底状態へ移動します。そして、図では緑の矢印で示されている蛍光が発光します。

質問者様のおっしゃる励起スペクトルはこの青色の矢印の波長を変えながら緑色の矢印すべてひっくるめた蛍光全体の強度を測ります。このとき、電子励起状態の振動基底状態や振動励起状態(図では太い横線が各電子状態の振動基底状態を示し、その上の細い横線がその電子状態の振動励起状態を示しています。)へ励起されますので、励起光の波長は電子励起状態の各振動状態のエネルギーに対応したものとなります。溶液などでは、振動励起状態へ励起してもすぐにその電子状態の振動基底状態へ緩和されますので、緑の矢印全体の強度というのは、励起された分子の数に比例します。つまり、励起スペクトルは分子の吸収スペクトルに比例したようなスペクトルが得られるわけです。(もちろん、いろいろ例外はありますが)

さて一方、質問者様のおっしゃる蛍光スペクトルは緑色の矢印をさらに分光器などで分散させて矢印一本一本を別々の波長として観測するスペクトルです。つまり、波長は電子励起状態の振動基底状態から電子基底状態の振動励起状態のエネルギーに対応したものとなります。

蛍光スペクトルにおいて、励起光の波長がわからないと言うことですが、溶液などでは励起分子はすぐに電子励起振動基底状態へ緩和しますので、励起光の波長を変えて励起する分子の振動状態を変えても、蛍光スペクトルはすべて電子励起振動基底状態からのもので、波長とその強度比は変わりません(励起スペクトルのように全体の強度はかわりますが)。このような場合、励起光の波長を書かないことが多いです。

図でもわかるように、励起光の波長と蛍光発光の波長はは電子励起振動基底状態のエネルギーをはさんで、励起光は電子励起状態の振動エネルギーだけ高いエネルギー(短い波長)になり蛍光は電子基底状態の振動エネルギーだけ引いエネルギー(長い波長)になり、それぞれの振動エネルギー構造が似ていれば、鏡像のような形になることがわかります。

以上、「励起光が書いていない」ということから類推して、すべて溶液の蛍光測定と仮定してお答えしました。気体や分子線を使ったLIFではちょっと話がかわってきますので、その点はご留意ください。

参考URL:http://www.jp.jobinyvon.horiba.com/product_j/spex/principle/index.htm#01

#1さんの説明の通りですが、いくらか、図などがあった方がわかりやすいかもしれませんので、参考URLにgoogleで出て来たページを紹介します。ページ中程にあるJablonski Diagramの左側が蛍光について示した物です。以下、おそらく溶液の蛍光についての質問であると予想して、述べます。

さて、蛍光の過程について述べますと、蛍光とは図にある青の矢印に対応する励起光を分子が吸収します。その後、図では黒色の矢印で示された光を発しない緩和過程(溶媒などに熱エネルギー等の形でエネルギーを渡し、エネルギ...続きを読む

Qa.u.という単位について

例えば可視領域での光の特性について考えているとき、a.u.という単位が出てきましたが少し調べたんですが10E-10(オングストロームユニット)や天文単位と出てきましたが、任意単位という話も聞きます。どなたか詳しく教えて下さい。

Aベストアンサー

可視領域での光の特性の何に出てきたのでしょうか。吸収あるいは透過の強度を示す単位としてでしょうか。

もしそうでしたら,a.u. = arbitrary unit で任意単位の事です。

例えば,光の透過や吸収の強さを示すには通常モル吸光係数などを用います。しかし,単にいくつかの資料の強弱の比較だけをしたい場合など,測定器の読み取り数値をそのまま使用したりする事があります。この様な場合に a.u. を使用します。

Q粘度法による分子量測定について

粘度から分子量を求めることが出来る理由または原理が分かりません。どなたか分かる方、力になってもらえたらうれしいです。お願いします。

Aベストアンサー

 大学で使われる教科書には必ず乗っていると思います。高分子の極限粘度と分子量には[極限粘度]=K×[分子量]a乗(K、aはポリマーハンドブックなど一般のポリマーについては文献値があります。)が成り立つからなのですが・・・・。
 
 極限粘度とは数個の濃度の違う高分子溶液の粘度を求めて、これを0に補外した濃度0の点の高分子溶液の粘度です(これも教科書に書かれています。補外の仕方にはいろいろありますが、近似式が直線だとした場合は切片です。)濃度0の時の高分子溶液の粘度??と思われるかも知れませんが、溶媒自体の粘度じゃないのと思われるかも知れませんが、大量の溶媒の中に高分子1分子のみがぽっつ~んといる状態をイメージしてください。このときの溶液の粘度が極限粘度です。
 
 ここからが高分子の特徴的なところだと思います。低分子の場合、1分子のみ溶媒の中にいても粘度はかわらないのですが、高分子は鎖がゆらゆらしており、その鎖はとても長い。長いために1分子の存在でも溶媒の粘度に影響を与えます。鎖が長いほうが、粘度が高くなりそうなのはイメージしやすいのではないでしょうか?
 とても簡単なイメージですが、上にあげた式は、高分子1分子が溶媒に溶けた時の粘度とその高分子1分子の分子量の関係を示しているとでも考えてもらったらよいのではないでしょうか。

 式は教科書をみればすぐわかると思うので、どちらかというと私が考えている概念を書いてみました。専門家からみれば??のところもあると思いますが参考なったらよいです。

 大学で使われる教科書には必ず乗っていると思います。高分子の極限粘度と分子量には[極限粘度]=K×[分子量]a乗(K、aはポリマーハンドブックなど一般のポリマーについては文献値があります。)が成り立つからなのですが・・・・。
 
 極限粘度とは数個の濃度の違う高分子溶液の粘度を求めて、これを0に補外した濃度0の点の高分子溶液の粘度です(これも教科書に書かれています。補外の仕方にはいろいろありますが、近似式が直線だとした場合は切片です。)濃度0の時の高分子溶液の粘度??と思われるかも...続きを読む

Q光源の相対エネルギー

蛍光灯などの分光分布のグラフで、縦軸に「相対エネルギー」や「比エネルギー」と書かれていますが、何と相対しているのでしょうか?またそのようなとき縦軸「相対エネルギー」の単位は%で表すということでしょうか?良く理解できていないので質問自体におかしなところがあるかもしれませんが、よろしくお願い致します。

Aベストアンサー

このように光源の各波長における発光エネルギー分布を知りたい場合、本当に欲しい数値は、大抵の場合、

  <光源の単位立体角当たり・単位波長当たりの絶対発光エネルギー>

だと思います。しかし、文献やウェブサイトに出ている多くのグラフでは、縦軸は「相対強度」になっています。これらのグラフは一般に、対象となる光源からの光を適当な手段で分光光度計に導いてやり、分光光度計で波長を走査しながら測光値を測定し、横軸に波長・縦軸に測光値を取ってプロットすることにより得られる"発光スペクトル"です。このときの縦軸のディメンジョンは「強度(エネルギー)」ですが、測りっぱなしの生の測定値をきちんとした単位(例えばμW/cm2など)を用いた"絶対値"に換算するのは実は容易ではありません。そこで、測りっぱなしの生の測定値をそのまま"発光スペクトル"の縦軸にする場合、縦軸を生数値のまま"任意単位"として表示したり、測定した波長範囲での発光強度の最大値を100%(または"1")として"相対強度"として表示したりします。これがご質問にある、「相対エネルギー」や「比エネルギー」の実態です。

> 何と相対しているのでしょうか?

通常「相対」という言葉は、「基準に対する相対値」の意味で使われることが多いのですが、上記の場合は「相対」の意味するものは非常に曖昧です。良心的に、使用した分光光度計の各波長における分光特性を基準ランプや黒体炉などで校正してある場合は、縦軸の数値そのものはきちんとした単位系での数値にはなっていなくても、少なくとも真値に比例した量にはなっているので、十分役に立ってくれます。しかし、極端に言えば、「"絶対値"ではない」というだけの意味でしかない場合もあります。分光光度計をきちんとした基準で校正していない場合は、「測定した波長範囲での発光強度の最大値を100%」としていても、異なる波長における強度同士を定量的に比較することもできません。

このように光源の各波長における発光エネルギー分布を知りたい場合、本当に欲しい数値は、大抵の場合、

  <光源の単位立体角当たり・単位波長当たりの絶対発光エネルギー>

だと思います。しかし、文献やウェブサイトに出ている多くのグラフでは、縦軸は「相対強度」になっています。これらのグラフは一般に、対象となる光源からの光を適当な手段で分光光度計に導いてやり、分光光度計で波長を走査しながら測光値を測定し、横軸に波長・縦軸に測光値を取ってプロットすることにより得られる"発光スペクトル...続きを読む