
No.4ベストアンサー
- 回答日時:
> 答えは
> 2/π +(4cos2x)/3π -4cos4x/15π+・・・+(4cos2nx×(-1)^(n+1))/(4n^2-1)π+・・・・
> でよいでしょうか?
そうだと思います.
No.3
- 回答日時:
注意点:
[1]
|cos x| の基本周期は(2πではなく) πです.
(|cos x| のグラフを描けばわかります.)
そこで,積分区間を[-π/2, π/2]とすれば,
この区間で |cos x| = cos x なので,容易に絶対値をはずせます.
そうすると,基本周期がπなので,
関数列 cos(2nx), sin(2nx) で展開しなければいけません.
(cos や sin の引数が,nx ではなく,2nx であることに注意.)
[2]
|cos x| は偶関数なので,
sin(2nx)の展開係数 b[n] はすべて 0 になるはず.
さらに偶関数であることを利用すれば,
a[n] = (2/π)∫[-π/2, π/2] |cos x| cos(2nx) dx
= (4/π)∫[0, π/2] cos x cos(2nx) dx.
あとは「積→和の公式」を使って...
頑張ってください.
この回答へのお礼
お礼日時:2011/01/09 12:31
絶対値の場合分けを間違っていました。
答えは
2/π +(4cos2x)/3π -4cos4x/15π+・・・+(4cos2nx×(-1)^(n+1))/(4n^2-1)π+・・・・でよいでしょうか?
No.2
- 回答日時:
その計算は絶対値を外すときの注意不足か.
a0=1/π∫(-π→π)|cos x| dx
=2/π∫(0→π) |cos x| dx
≠2/π∫(0→π) cos x dx = 0.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
この問題の解き方を教えてくだ...
-
積分の問題です
-
eの2πi乗は1になってしまうんで...
-
Σは二乗されないのですか?
-
e^2xのマクローリン展開を求め...
-
1+ tan² θ=1/cos² θ の公式を、...
-
加法定理
-
1+cosθをみると何か変形ができ...
-
cos(2/5)πの値は?
-
△ABCにおいてAB=4、BC=6、CA=5...
-
体積を求める公式の導き方
-
高校数学 三角関数
-
cosΘの問題
-
長方形窓の立体角投射率
-
cos2x=cosx ってなにを聞かれ...
-
自然対数eは何に使えるのですか...
-
積分の公式
-
tan の部分積分
-
X5乗-1=0 の因数分解の仕方...
-
Arccosの原始関数って…
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^2xのマクローリン展開を求め...
-
eの2πi乗は1になってしまうんで...
-
1+cosθをみると何か変形ができ...
-
長方形窓の立体角投射率
-
積分
-
三角関数
-
cos(2/5)πの値は?
-
cos2x=cosx ってなにを聞かれ...
-
数学の質問です。 0≦θ<2πのとき...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
複素数zはz^7=1かつz≠1を満たす...
-
a>0とする。曲線y=sin2x(0≦x≦π...
-
【数学】コサインシータって何...
-
双極子モーメントの別解
-
インテグラル(cosx/(1+sinx))dx...
-
1/ a + bcosx (a,b>0)の 不定積...
-
∮sinθcos^2θを置換積分なしで =...
-
1+ tan² θ=1/cos² θ の公式を、...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
数3です。 第n項が次の式で表さ...
おすすめ情報