なるだけ大きい氷の単結晶を作りたいのですが、作り方を教えていただけたらとても助かります。よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

天然の単結晶に氷筍というものがありまして


これはトンネル等の上から滴がゆっくりと落ちてきたものが凍って出来ます。
人工的にも作られています。
これは輪切りにしてスケートリンクに敷くと摩擦抵抗が少なくなるので
長野オリンピックの前にMウェーブでも実験的に使われました。
この時はトンネル内を仕切って大型のコンプレッサーで冷やしながら作っています。
なので、ゆっくり滴を落として時間をかければ大きいものが出来るのではないでしょうか?
    • good
    • 0
この回答へのお礼

有難う御座います。

お礼日時:2001/04/20 20:25

rei00 です。



皆様の回答を拝見して考え直してみると,「氷の単結晶」を作るという事は「溶け難い氷」,「透明な氷」を作るのと同じだと思います。

以前に yajiko さんがされた「 QNo.65624 溶けにくい氷の作り方を教えてほしい」(参考 URL)の回答も参考にして下さい。

参考URL:http://www.okweb.ne.jp/kotaeru.php3?q=65624
    • good
    • 0

参考になるかどうかわかりませんが,参考 URL のペ-ジの方はラマンスペクトル測定用の氷単結晶を「モディファイトブリッジマン法」で作製したようです。



参考URL:http://www.geocities.co.jp/SilkRoad/5325/jikanhe …
    • good
    • 0

どの程度のことをしたいのかがわからないのですが、単結晶を作るには結構な設備が必要になると思います。


私の知っている教授で、氷の単結晶の研究をしていて、実際に作っている大学がありますので、問い合わせてみると良いかと思います。
そこの研究室のURLを書いておきますね。

参考URL:http://www.muroran-it.ac.jp/mat/kessyou.html
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q単結晶の作り方

私は現在大学で有機合成系の研究をしているものです。X線解析用の単結晶がなかなかつくれず苦労しているのですが、単結晶をうまくつくるコツや、こうすればうまくいったなど、何かアドバイスがあればいただきたいのでよろしくお願いします。

Aベストアンサー

rei00 です。

 昨日書店にて次の成書を見かけました。参考になるかと思いますので,追加回答しておきます。

「有機結晶作製ハンドブック」
  平山令明∥編著
  出版者 :丸善
  出版年月:2000.4
  資料形態:243p,22cm,6800円
  ISBN:4621047469

Q単結晶について

結晶構造について勉強しています。

単結晶とはどのような結晶のことなのかよく分かりません。このような化学の分野はあまり勉強したことがないので詳しく教えてください。また、具体的な単結晶の例もいくつか教えてください。

これに関する参考文献、URL等もございましたら教えてください。よろしくお願いします。

Aベストアンサー

単結晶の前に、結晶の定義について考えてみたいと思います。
最初の段階であれば既に回答が寄せられているように「分子や原子が規則的に並んでいる」「規則的に配置している」という定義で十分かと思いますが、結晶構造について学ばれている方向けということでもう少し掘り下げて説明してみたいと思います。

いま例えば2種類の原子○と●を「規則的」に並べてみます。

●○●●○○●●●○○○・・・
●○●●○○●●●○○○・・・
●○●●○○●●●○○○・・・
【図1】

と並んでいるものは結晶でしょうか。
並び方に規則性はありますがこれは結晶とは呼びません。「規則性」の中身をもう少し厳密に定義しなくてはならないわけです。
結晶工学では結晶のことを通常、「構成する原子・分子の配置が(空間的)並進対称性を有する固体」などと定義します。では「並進対称性」とは何でしょうか?

再び2種類の原子○と●を並べてみます。

・・・・・・・・・・・・・・
・・・●○●○●○●○・・・
・・・●○●○●○●○・・・(上下左右に無限に続く)
・・・●○●○●○●○・・・
・・・・・・・・・・・・・・
【図2】

図2でですが、上下方向に1マス(1行)ずらしたとすると元の図の配置に重なります。左右方向については2マス(左右どちらでもよい)ずらすとやはり元の配置に重なります。このようにある特定の距離だけずらしても同じ配置となる性質を「(空間的)並進対称性」といい、その距離のことを「周期」といいます。周期を有する構造(周期構造)を持つことが結晶の本質です。

次に「単結晶」について説明します。単結晶とは通常、「多結晶」の対義語として使われる用語です。
「単結晶(単結晶材料)」とは「その材料のどの部分を取り出しても、その結晶の方位が一定である材料」を指します。平たく言うならばその塊のどこを切り出しても、原子・分子の並んでいる向きが同じ、ということです。既に回答が寄せられているように半導体シリコンはその最も有名な例です。参考ページ[1]のページに工業的製法(チョクラルスキ法)の紹介がありますからご覧ください。
これに対し切り出す場所によって結晶軸が異なる材料が「多結晶」で、これはNo.2でmmmmaさんが「一つの塊の中で複数の結晶領域がある」と説明されている通りです。多結晶でも個々の領域(結晶粒)を取り出せばそれは単結晶です。
参考ページ[2]では同じシリコンでも多結晶シリコンを用いた太陽電池パネルが紹介されています。領域ごとに光の反射の仕方が異なるためステンドグラスのようなモザイク模様を呈します。

他の単結晶の例としては
多くの宝石(ダイヤモンド、サファイア、水晶など) 多くの半導体材料(シリコン以外にガリウムヒ素やガリウムリンなど) 岩塩 雪
などがあり、多結晶の例としては
ほとんどの金属(鋳鉄、アルミ合金など) セラミックス(アルミナ、ジルコニア、窒化ケイ素など) 通常の氷
などがあります。

宝石はなぜ単結晶なのでしょうか。(というか、なぜ単結晶の鉱物でないと宝石としての価値が出ないのでしょう?) 材料中に光が入射した際、もしその材料が多結晶であったなら、個々の結晶粒間の境界(粒界などと言います)で光が散乱され透明にはなりません。単結晶であるが故に透明となり価値が出てくるわけです。(注: 単結晶でも透明でないものはあります)
また同じ水が凍ったものでも、雪はなぜ単結晶で氷は多結晶なのでしょうか。雪は上空で、結晶の元となる小さな粒(核)に次々と他の水の分子が順々に規則正しく並んでできるものです。氷は一か所から凍り始めるとは限らず、複数地点から凍り始めると、そこから出発したそれぞれの領域は無関係な並び方(結晶方位)をすることになるからです。

この辺の話を網羅的に記述しているサイトは残念ながら見つけられませんでした。書籍についてはhonisuさんが目指される方向が分からないので難しいのですが、例えば
「結晶工学の基礎」http://www.shokabo.co.jp/mybooks/ISBN4-7853-2509-7.htm
あたりは悪くないと思います。

[1] http://www.sumcosi.com/laboratory/laboratory1.html
[2] http://www.greenpost.jp/099/00new/02/pv/

参考URL:http://www.shokabo.co.jp/mybooks/ISBN4-7853-2509-7.htm

単結晶の前に、結晶の定義について考えてみたいと思います。
最初の段階であれば既に回答が寄せられているように「分子や原子が規則的に並んでいる」「規則的に配置している」という定義で十分かと思いますが、結晶構造について学ばれている方向けということでもう少し掘り下げて説明してみたいと思います。

いま例えば2種類の原子○と●を「規則的」に並べてみます。

●○●●○○●●●○○○・・・
●○●●○○●●●○○○・・・
●○●●○○●●●○○○・・・
【図1】

と並んでいるものは結晶でしょうか。
並び方に規則性はありま...続きを読む

Q半導体デバイスはなぜ単結晶である必要がある?

トランジスタ・ダイオードの動作やバンドギャップ理論等は遠い昔に勉強しましたが、当時習った「単結晶であらねばならない」理由が今ひとつ理解出来ませんでした。テキストに書いてあったのは「半導体の特有の性質は単結晶でないと出ないから」、、、何それ?分かったような分かってないような気分でした。多結晶だとどうして駄目なんでしょうか。どうして特有の性質(バンドギャップ云々だと理解してますが)が出ないのでしょうか?

宿題目的ではありませんのでそのものズバリ答えを教えて下さい。

Aベストアンサー

実際に単結晶以外で作られたトランジスタと、単結晶
でつくられたトランジスタの特性を比較してみれば、
単結晶である必要性が簡単に理解できるでしょう。

多結晶を利用したトランジスタの例として、液晶の駆動に
利用されているものをあげることができます。液晶では
ガラス基板上にトランジスタを形成する必要があるため、
多結晶シリコンしか利用することができません。

下の記事は、CGSという非単結晶の中では高性能なトラン
ジスタを作成できる技術をデモするために、マイコンを
作成したというものです。
http://techon.nikkeibp.co.jp/members/01db/200210/1008626/

しかし、トランジスタ数は約1.3万個で、たった3MHzで
しか動作していません。ほぼ同時期に単結晶シリコンを
利用したマイコンであるPentium4は、約4000万個のトラ
ンジスタを利用しており、動作周波数3GHzに達しています。

集積度で3000倍、動作周波数で1000倍の差がでています。
これは2002年時点での比較、しかも技術デモと最先端商品
の比較なので、現状はすこし縮まっているかもしれませ
んが、とても同程度というレベルにはなっていません。

これだけの差がつく原因の一つは、電子の流れやすさの
指標である移動度が、単結晶に比べて、多結晶では非常に
遅いことです。平行移動にたいして繰り返し構造をもつ
単結晶では、電子が散乱されにくいのに対し、多結晶では
並進対象性が破れていることから、電子が散乱されるのが
原因です。

また、単結晶では基板のどこでトランジスタを作成しても
同じ特性がでますが、どのような方位の結晶粒と結晶
粒界がチャネル領域にくるかわからないため、多結晶で
は位置により特性にばらつきがでます。したがって、
トランジスタの特性が揃っていることが要求される高性能
大規模集積回路の作成が難しくなります。

これらのことから、多結晶を用いたトランジスタは、液晶
の駆動回路など、非常に限られた部分でのみ利用されて
います。

トランジスタ以外に、光半導体などの場合は、理想的な
単結晶から結晶品質が下がる(欠陥が多くなり、多結晶
に近づく)と、発光の線幅が広がる、非発光性再結合など
が増え発光効率が下がる、発光動作を続けると構造が変化
し短時間で発光しなくなるなどの問題が生じます。

実際に単結晶以外で作られたトランジスタと、単結晶
でつくられたトランジスタの特性を比較してみれば、
単結晶である必要性が簡単に理解できるでしょう。

多結晶を利用したトランジスタの例として、液晶の駆動に
利用されているものをあげることができます。液晶では
ガラス基板上にトランジスタを形成する必要があるため、
多結晶シリコンしか利用することができません。

下の記事は、CGSという非単結晶の中では高性能なトラン
ジスタを作成できる技術をデモするために、マイコンを
作成したという...続きを読む

Q単結晶作成法で困ってます

はじめまして。
現在、X線構造解析用の単結晶(有機化合物)を作成しようとしているのですが、どうしても『ファイバー』のような細い針状結晶しか出来上がらず、困っています。

これまでに、様々な溶媒(クロロホルム、トルエン、酢酸エチル、ジオキサン、アセトニトリル、アセトン、エタノールなど)を試したり、また手法も溶媒をゆっくり蒸発させたり、貧溶媒(ヘキサン、エーテル、メタノールなど)の蒸気をゆっくり溶かしこんだりと、いろんな手法をとってきましたが、たいていはファイバー状になってしまいます。

化合物自体の溶解性は高いほうでして、水、ヘキサンには不溶、メタノール、エタノール、エーテル、アセトニトリルには少し溶け、他の溶媒には良好に溶ける感じです。しかしファイバー状のものができていることから、結晶成長時に自己組織化しやすい化合物のような印象を受けます。

このような化合物をブロック状の単結晶にすることはできるのでしょうか。あるいは、類似のケースにて溶媒を変えたら成功した、などの例をご存知の方はおりますでしょうか?

Aベストアンサー

結晶形は化合物に依存するので晶形を変えるのは難しいと思います。
針状結晶でも上手く育てればX線結晶構造解析に使えるサイズに出来ると思うので、ゆっくり出して大きくなるのを待つのが良いかなと。

参考までに私の知っている結晶の出し方を一つ挙げます。
モノに貧溶媒を少しずつ加え、ある程度加えて溶け切らなかったら、程ほどに溶ける良溶媒を少しずつ加え、完全に溶かす。
これを冷凍庫(-20℃)に入れ結晶が出るまで待つ。

基本的に少しだけ過飽和な状態でゆっくり時間をかけて出すのが良いはずです。

Q水は答えを知っている の結晶の作り方を教えて下さい☆

あの本の作者はどのような方法で水の結晶を作ったのでしょうか。私も彼と同じ実験をやりたいのでどなたか教えていただけないでしょうか。

“水は答えを知っている”は綺麗なエネルギーを水に注いで結晶させると綺麗な結晶が、綺麗でないものを注ぐとその通りの形の結晶ができるという本です。

よろしくお願いします。

Aベストアンサー

ビデオが出ていますから、それを参考にされてはいかがですか、まあ、金をどぶに捨てるようなものですが

で、ある機械にそのビデオを見ました。
ビデオを見ればほとんど偶然で恣意的なことがわかるけどね

そこでのやり方としては

・水をほめるか、バカヤローとののしる
・水を氷温以下に冷やす
・水は氷結時に膨張し、中央が尖って盛り上がった形に凍結する
・この尖った部分を核として「空気中の水蒸気」が結晶を形成する。
なお、結晶の条件はありがとうやバカヤローにかかわらず、中谷スケールに従う。結晶しているのは空気中の水蒸気で、ほめられたり貶されたりした水ではないことに注目すれば、この話がいかに非科学的かわかるはず

実験するには肉屋の冷凍庫のような歩いて入れる規模の冷凍室が必要です。通常の空気中では結晶化しません。

なお、チンダル像というの誤りで、提唱者(藤倉珊氏)もすでに撤回しています。


人気Q&Aランキング