No.5ベストアンサー
- 回答日時:
[1]グラフから大小関係を調べる方法
y=cos(x)のグラフは添付図のようになりますのでグラフから
cos3<cos4<cos2
となります。
[2]式的に大小関係を調べる方法
三角関数の和積公式を使えばいいです。
π/2(≒1.57)<B<3π/2(≒4.72)のとき cosB<0
なので
cos2<0, cos3<0, cos4<0,
0<A<π(≒3.14)のとき sinA>0
π(≒3.14)<A<2π(≒6.28)のとき sinA<0
なので
cos2-cos4=2sin((4+2)/2)sin((4-2)/2)=2sin3 sin1>0
(∵sin3>0,sin1>0)
∴cos2>cos4
cos4-cos3=-2sin((4+3)/2)sin((4-3)/2)=-2sin(3.5)sin(0.5)>0
(∵sin3.5<0,sin0.5>0)
∴cos4>cos3
以上から cos2>cos4>cos3
No.4
- 回答日時:
1=θとすると、cos2θ, cos3θ, cos4θ の大小を定めると良い。
sinθ>0、sin(7θ/2)>0、sin3θ>0cos3θ - cos4θ =-2sin(7θ/2)*sin(θ/2)<0
cos4θ - cos2θ=-2sin(3θ)*sin(θ)<0
よって、cos2θ>cos4θ>cos3θ → cos2>cos4>cos3
No.3
- 回答日時:
こんにちわ。
与えられている角度ですが、度ですか?ラジアンですか?
それによって答えも変わるかと。
No.2
- 回答日時:
0≦θ≦π≒3.14 の範囲でcosθは減少し続けます。
cos4=cos(-4)=cos(2π-4)≒cos(6.28-4)=cos2.28 なので、
cos2>cos2.28>cos3
cos2>cos4>cos3
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 座標変換について 1 2022/08/04 16:42
- 数学 写真の(3)の問題の解説の1行目についてですが、 ①なぜ、曲線Kの囲む図形は、cos(-θ)と表せる 5 2023/01/26 00:36
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 フーリエ変換についての質問です。 h(t)=cos(ω0t)×cos(ω1t) のフーリエ変換を教え 1 2022/07/23 17:37
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 数学 マクローリン展開を簡単にする方法を教えてください 2 2023/07/10 16:15
- 数学 写真の赤線部にについてですが、 どのように展開すれば「cos²5x-cos²3x」から 「sin²3 3 2023/02/13 13:38
- 物理学 物理の問題です。 1 2022/12/20 23:04
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・ハマっている「お菓子」を教えて!
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学の質問です。 0≦θ<2πのとき...
-
cos(2/5)πの値は?
-
1+cosθをみると何か変形ができ...
-
-cosθ=cos2θってθについてどう...
-
[高1数学A 三角比の相互関係] ...
-
数学の質問です。 円に内接する...
-
cos2θ+cosθ+1=0
-
この問題教えてください 範囲は...
-
cos60°が、なぜ2分の1になるの...
-
三角比の問題を教えて下さい
-
テスト問題が解けないです
-
三角関数で、
-
1/ a + bcosx (a,b>0)の 不定積...
-
高校数学の勾配に関する問題で...
-
ベクトル解析でストークスの定...
-
数2
-
三角関数の問題
-
加法定理の問題
-
商の微分について
-
高一数学です。 180<θ<270, s...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
数学の質問です。 0≦θ<2πのとき...
-
eの2πi乗は1になってしまうんで...
-
e^2xのマクローリン展開を求め...
-
cos2x=cosx ってなにを聞かれ...
-
三角関数で、
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
cos60°が、なぜ2分の1になるの...
-
cos(2/5)πの値は?
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
複素数zはz^7=1かつz≠1を満たす...
-
x=rcosθ の微分
-
cos^3tを微分するときはどうや...
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
三角関数
-
二等辺三角形においての余弦定...
-
フーリエ級数|cosx|
-
cosΘの問題
-
cos40°の値を求めています。
-
Σは二乗されないのですか?
おすすめ情報