中小企業の働き方改革をサポート>>

1m^3の容器内の空気が0.1kPaの真空に保たれていて、その温度は周囲温度25℃に等しいとする。この系のエクセルギーを求めよ。ただし空気中のガス定数は287J/kg・Kとする

という問題が分かりません。
答えは100kJだそうです。


エクセルギーとは反応前の数値、反応後の結果がないと出せないのではないでしょうか?

あと「1m^3の容器内の空気が0.1kPaの真空に保たれていて」という表現が理解できません・・・。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

まず標準状態の定義を示します。

標準状態…25[℃]=298.15[K]かつ101325[Pa]の状態のことである。

標準状態における空気の密度は1.2928[kg/m^3]

この問題では0.1[kPa]=100[Pa]なので、簡単に比をとり密度を計算すると100:101325=x:1.2928 

ゆえにx=0.001276[kg/m^3]

1[m^3]の容器で考えているので密度はそのままx=0.001276[kg/m^3]

全エネルギーEを計算します。

ガス定数287[J/kg K]より、E=287×(25+273.15)×0.001276=109.1861[J]

エクセルギーとは有効エネルギーのことで、全エネルギーから無効エネルギーを差し引いたもの。つまり取り出し可能なエネルギーのことです。この系では周囲と温度が等しい(エントロピー変化量が0)ので無効エネルギーは考える必要はない。よって全エネルギーがそのままエクセルギーになります。

「1m^3の容器内の空気が0.1kPaの真空に保たれていて」という表現は「標準状態における圧力(101325[Pa])よりも十分に低い圧力に保たれている」ということですね。

指定されている答えの100[kJ]と全然違いますが…この回答に不審な点があるかたどなたかお願いします。
    • good
    • 2
この回答へのお礼

「1m^3の容器内の空気が0.1kPaの真空に保たれていて」が、真空に空気を入れるのに真空と呼べないのでは・・・と考えていました。ありがとうございます

お礼日時:2011/07/27 04:36

100kJと109.1861kJの違いは温度273.15と298.15の違いですね。


あとは問題の読み方と出題が正しかったかどうかに掛かっています。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエクセルギーが分かりません

 今エクセルギーを勉強しているのですが いまいち理解が出来ません。エクセルギーとは「ある系が周囲温度と平衡に達するまでに、他の系に与える最大仕事のこと」だとは分かりました。
 このエクセルギーの計算ですが、調べたHPで系の温度と周囲温度の値による熱エクセルギー比の変化というものがありました。
 この式は熱エクセルギーξが
ξ=E/Q=m(h-h0){1-T0/(T-T0)lnT/T0}...(1)
  で求めていました。この式は
熱効率ηmax=1-T0/T
 と指すものが同じだと思うのですが値を代入してみると(1)とは違った値が出てきます。これは何故でしょうか?何故エクセルギはW=η×Qと明確に区別するのでしょうか?どなたか分かりやすく教えていただけないでしょうか。

Aベストアンサー

<<3補足
はい。そのとおりです。

なお、♯3の訂正です。

カルノーサイクルでは、熱源の温度は十分大きいとしていて×→熱源の大きさは十分大きいとしていて

Qエクセルギー

次の問題が分かりません。どなたか教えてください。
問題 80℃のお湯1kgと20℃のお湯1kgを混合したときのエクセルギー損   失を求めよ。

お願いします。

Aベストアンサー

教科書は何を使っていますか。
補足を見ると、有効エネルギーで良さそうですね。

(1)80℃のお湯1kgと20℃のお湯1kgのそれぞれのエクセルギーを求める。(カルノーサイクルの熱効率で考えれば良いですね。)
(2)その2つのエクセルギーの和を求める。
(3)80℃のお湯1kgと20℃のお湯1kgを混合すれば何℃のお湯が何kgできるか。(これは中学生程度)
(4)(3)のお湯のエクセルギーを求める。
(5)(2)の結果から(3)の結果を引くとそれが、エクセルギー損失になります。

Q有効エネルギー(エクセルギー)と熱力学コンパスについて

有効エネルギー(エクセルギー)と熱力学コンパスについて

いま、熱力学で、熱力学コンパスを用いた、ある化学物質の、複数の製造・合成プロセスのエクセルギー損失の評価をまなんでいます。各合成プロセスのエクセルギー損失を比較して、一番最小になるものが(理論的に)効率的な製造プロセスということを聞きました。

ですが、それの理由というか概念が理解しづらく困っています。そもそも、合成反応で取り出し得るエネルギー(エクセルギー)って何のことかよく理解できていません。ガスの燃焼反応とかでしたら、熱として取り出し得るんだと頭の中では概ねですがわかるんですが…
どなたか簡単でもよいので、教えてください。

Aベストアンサー

エクセルギーというのは科学(理学)の用語ではなく、生活・技術(工学)用語です。
合成反応で取り出し得るエネルギーについて知るには、熱力学の基礎を学ばなければなりません。カルノーサイクルの効率とギブスの自由エネルギー(または、ヘルムホルツの自由エネルギー)について復習して下さい。等温等圧ではΔG=ΔH-TΔSが、取り出し得る最大の仕事(有効エネルギー)になります。

エクセルギーは、環境を基準の状態としたときの、自由エネルギーの変化です。(エネルギーにはいろいろな形態がありますので、厳密にエクセルギーを定義することは困難です。)取り出し可能な最大仕事をWとすると、W=ΔH-TΔSとります。このWがエクセルギーです。ただし、G-G0、ΔH=H-H0、ΔS=S-S0 であり、H0、S0は環境の状態(常温常圧など)におけるエンタルピー、エントロピーです。

しかし、エクセルギーは工学の概念ですから、厳密ではありません。したがって、その理解もアバウトで良いのではないでしょうか?あまり、神経質になる必要もないような気がします。

Qエントロピー変化の計算

完全気体の圧力がPiからPfまで等温変化するときのエントロピー変化を計算せよ、という問題があります。しかしどのように計算すれば良いのか分かりません。この答えはΔS=nR*ln(Pi/Pf)だそうです。

以下は自分の考えです。
dS=dq/T と表されるのでΔS=∫(dq/T)=q/T (積分範囲はi→f)となり、熱を求めようと思いました。
等温変化なのでΔU(内部エネルギー変化)=q+w=0 (q:熱 w:仕事)が成り立ち、q=-wとなり、仕事を求めばいいと思うのですがどのようにwを求めていいのか分かりません。圧力一定で、体積が変化する場合なら求められるのですが・・・。

どなたかお分かりになる方、教えていただければ幸いです。

Aベストアンサー

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数だからです)
そして今dT=0より、結局pdV=-Vdp 状態方程式でVをpであらわし
よって、∫dS=∫pdV/T=∫-Vdp/T=∫-(nR/p)dp
=-nR[logp](p=pi~pf)
=nRlog(pi/pf)

余談ですけど、なぜ可逆過程なのにエントロピー変化があるのかというと、ひとつは、断熱系と混同しがちだからです。dS≧dQ/Tというのが、一番基本的なものなのです。断熱系dQ=0の場合のみdS≧0となりエントロピー増大則になります。また
等温変化の可逆過程では、dS=dQ/Tと、=になりましたけど、
これを高熱源や低熱源を含めた全体の系に適用すると、全てを含めた全体は断熱系になっているから、
dQ=0より、エントロピー変化はありません。
質問の場合なら、一見エントロピーはΔS=nR*ln(Pi/Pf)
と増加しているようですが(膨張を過程),それは気体のエントロピーのみ考えているからであり、
完全気体が高熱源から準静的に熱量Qをもらっている
はずで、逆に言うと高熱源は熱量Qを失っています。
だから、高熱源はエントロピーQ/Tだけ失っているから
完全気体と高熱源をあわせた系のエントロピー変化は
-Q/T+nR*ln(Pi/Pf)=0となって、結局全体で考えれば
エントロピー変化はありません。カルノーサイクル
の例も一応挙げとくと、
高熱源のエントロピー変化量:-Q/T1
低熱源〃:(Q-W)/T2
ですけど、カルノーサイクルの効率は1-(T2/T1)より
W=Q(1-T2/T1)∴低熱源:Q/T1となって、高熱源と低熱源
をあわせた系全体のエントロピーの変化はありません。

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q熱交換の基礎式を教えてください。

熱交換器における基礎式を教えてください。
蒸気と水での熱交換を行う際に、入口温度と出口温度の関係、
それに流速等も計算のデータとして必要なんだと思うんですが、
どういう計算で熱量、流速を決めればいいのか熱力学の知識がないので
分かりません。
いろんな書籍を買って勉強していますが、難しくて分かりません。
それに独学ですので、聞ける人がいなくて困っています。
どなたか、簡単に熱交換の基礎式などを教えてください。

Aベストアンサー

 伝熱の計算は非常に難しいのですが、「難しい」と言っているだけでは先に進みませんので、そのさわりを。
 基本式は、Q=UAΔtです。
 Q:交換される熱量
 A:伝熱面積
Δt:伝熱面内外の温度差
  (冷却水入出の差ではない)

 ここで曲者は、U(総括伝熱係数とか熱貫流係数とか呼ばれるもの)です。
 Uの内部構造は、1/U=1/h1+1/hs1+L/kav.+1/hs2+1/h2と表現され、hを見積もる事が大変難しいのです。
 h:伝熱面の境膜伝熱係数、内外2種類有る。
 hs:伝熱面の汚れ係数、内外2種類有る。
 L:伝熱面厚み
 kav:伝熱面の熱伝導率の異種温度の平均、熱伝面内外で温度が異なり、温度によって変化する熱伝導率を平均して用いる。
 hは、流体の種類や流れる速さ(主な指標はレイノルズ数)によって変化します。
 hsは、どの程度見積もるか、、、設備が新品ならZeroとしても良いのですが、使い込むとだんだん増加します。
 更には、Aも円管で厚みが有る場合は、内外を平均したり、Δtも入り口と出口の各温度差を対数平均するとか、色々工夫すべきところがあります。

>冷却管はステンレス製(SUS304)です。
 →熱伝導度の値が必要です。
>冷却管の中の水の温度は入口が32℃で出口が37℃です。>流量は200t/Hr程度流れております。
 →冷却水が受け取る熱量は、200t/Hr×水の比熱×(37-32)になります。この熱量が被冷却流体から奪われる熱量です。=Q
>冷却管の外径はφ34で長さが4mのものが60本
>冷却管の外径での総面積は25.6m2あります。
 →冷却管の壁厚みの数値が計算に必要です。
 伝熱面積も外側と内側を平均するか、小さい値の内側の面積を用いるべきです。

 まあしかし、現場的な検討としては#1の方もおっしゃっているように、各種条件で運転した時のU値を算出しておけば、能力を推し測る事が出来ると思います。
 更には、熱交換機を設備改造せずに能力余裕を持たせるには、冷却水の温度を下げるか、流量を増やすか、くらいしか無いのではないでしょうか。

 伝熱の計算は非常に難しいのですが、「難しい」と言っているだけでは先に進みませんので、そのさわりを。
 基本式は、Q=UAΔtです。
 Q:交換される熱量
 A:伝熱面積
Δt:伝熱面内外の温度差
  (冷却水入出の差ではない)

 ここで曲者は、U(総括伝熱係数とか熱貫流係数とか呼ばれるもの)です。
 Uの内部構造は、1/U=1/h1+1/hs1+L/kav.+1/hs2+1/h2と表現され、hを見積もる事が大変難しいのです。
 h:伝熱面の境膜伝熱係数、内外2種類有る。
 hs:伝熱面の汚れ係数、内外2...続きを読む

Q開いた系についての概念について

今解いている開いた系の問題の解答を見ると
PV線図を作図する際、等温変化の曲線が直線になってます。間違いだと思うのですが違いますか?
 理想気体ならば等温の式PV=一定よりP=定数/Vとなり曲線になるはずですよね? 
 
 あとエンタルピについて質問です。エンタルピを考える時って開いた系の時だけですか?
  ΔQ=ΔH-VΔP
という変形は開いた系の時しか使えないのでしょうか?僕の考えでは、仕事を求める際圧力が変化し、PΔVで仕事が求まらない時にに上の式を使って変形して求まった仕事が工業仕事だと思うのですが違ってますか?教えてください!

Aベストアンサー

開いた系の P-V線図が反比例曲線の一部になるってことですよね?
おそらく levinoさんのお考えで正しいと思います。
そもそも、状態方程式は、閉じた系、開いた系によらず使えますから。。。

あと、エンタルピーですが、開いた系のときだけ登場しますね。
エンタルピーの定義は、簡単に言えば「系を出入りする全エネルギー」なんですけどね。
いや、かなり誤解を招く表現だと思いますんで、もうちょっと詳しく説明してみます。

閉じた系で考えるのであれば、系を出入りするエネルギーは熱しかありません。
つまり、仕事や内部エネルギーが熱以外の形で系を出入りすることはないんです。

ところが、開いた系では文字通り「開いている」わけですから、ある意味で何でもありです。
物質が系を出入りすることも自由です。
物質の出入りがあれば、当然そこにエネルギーの出入りも発生します。
たとえば、膨張した気体が漏れ出した場合には、仕事としてのエネルギー損失がありますし、そもそも気体の出入りがある時点で内部エネルギーの増減もあります。
このように物質の出入りによるエネルギーの増減は、「熱」とは呼べませんよね。

そこで導入されたものが「エンタルピー」ってやつです。
要するに、熱だけでなく他の物質の出入りによる仕事や内部エネルギーも含めて「出入りするエネルギー全体のことだよ」ということを、エンタルピーと呼ぶことにしたんです。

ご参考までに、エンタルピーに関するうまい説明をしているページをみつけましたので、参考URL に張っておきます。

また、閉じた系では絶対仕事 PdV、開いた系では工業仕事 VdP を使用しますね。

開いた系で PdV が求まらないのはある意味当然の話で、そのために工業仕事 VdP という量が導入されたんです。

こんな感じでいかがでしょうか。

参考URL:http://homepage2.nifty.com/eman/thermo/enthalpy.html

開いた系の P-V線図が反比例曲線の一部になるってことですよね?
おそらく levinoさんのお考えで正しいと思います。
そもそも、状態方程式は、閉じた系、開いた系によらず使えますから。。。

あと、エンタルピーですが、開いた系のときだけ登場しますね。
エンタルピーの定義は、簡単に言えば「系を出入りする全エネルギー」なんですけどね。
いや、かなり誤解を招く表現だと思いますんで、もうちょっと詳しく説明してみます。

閉じた系で考えるのであれば、系を出入りするエネルギーは熱しかありません...続きを読む

Qエントロピーの求め方

専門でないので初心者です。
エントロピーの求め方についての質問です。

参考書には等温での圧力変化の際のエントロピーを求める式(ΔS=nRln*Pa/Pb)や、逆に等圧での温度変化の際のエントロピーを求める式(ΔS=Cpln*Tb/Ta)が載っていました。

では、圧力も温度も変化する際にはどのようにしてエントロピーを求めたら良いのでしょうか。モル熱容量は与えられています(5/2*R)。

詳しい方、よろしくお願いします。

Aベストアンサー

エントロピーを温度と圧力の関数として微分を取ると

dS = (∂S/∂T)p dT + (∂S/∂p)T dp

熱容量の定義から

(∂S/∂T)p = Cp/T

Maxwellの関係式から体膨張率をα=(1.V)(∂V/∂T) pとして

(∂S/∂T)p = -(∂V/∂T)p = -Vα

なので

dS = (Cp/T) dT - Vαdp

単原子理想気体ならCp = (5/3)nR、α= 1/T、状態方程式がPV=nRTなので

dS = (5/3)nR(dT/T) - (V/T)dp = (5/3)nR(dT/T) - nR(dp/p)

これを求めたい経路で積分すればよいが、エントロピーは状態量なので始状態と終状態を等温線と等圧線でつないで温度の項と圧力の項をそれぞれ独立に積分すれば同じ結果が得られる。

Q一巡伝達関数と開ループ伝達関数

一巡伝達関数と開ループ伝達関数は何が違うのでしょうか?
本によって定義がまちまちで、あまり正しい定義がないのかなと思ってしまいますが、ちゃんとした定義が存在するのでしょうか?
インターネットでは一巡伝達関数と開ループ伝達関数は同一視していますが、私の学校の教科書では開ループ伝達関数はフィードバック系を取り除いたときのもの(すなわちC(S)P(S))、一巡伝達関数は閉ループ系を一巡したときのもの(すなわちC(S)P(S)H(S))となっています。

ご存じの方がいたらご教授よろしくお願いします。

Aベストアンサー

教科書の定義が正しいです。

一巡伝達関数は、ループをどこかで切り開いた時に、ループ全体一周する伝達関数で、ループの安定性(位相余裕など)なんかを調べるときに使います。

開ループ伝達関数は、ループをどこかで切り開いた時に、入力と出力の比です。

つまり、ループを切り開いて考えるのは同じですが、一巡伝達関数がループを一周(フィードバックの要素も考える)のに対して、開ループ伝達関数は入力と出力の比です(したがってフィードバックの要素は考えない)。

フィードバックの要素がない場合には、2つは同じになります。

Qショ糖の燃焼について

ショ糖(C12 H22 O11)が燃焼して二酸化炭素(CO2)と水(H2O)になる時の化学変化式
C12+H22+O11→CO2+H2O の係数ってどうなりますか?

Aベストアンサー

Cの数とHの数から、生成するCO2とH2Oの係数は決まり、

C12H22O11+xO2→12CO2+11H2O

Oの数を合わせると

C12H22O11+11O2→12CO2+11H2O

…となります。


人気Q&Aランキング

おすすめ情報