ネットが遅くてイライラしてない!?

こんにちは、二つお伺いします。
絵を用意したのですが、アップして画質が落ちることがよくあるようなので、その場合はご了承下さい。

質問1
導体内部は電場がゼロである、と理解しております。たとえ、導体内部に空洞があっても、空洞での電場もゼロ、そして導体がどんな非対称な形状をしていようともやはり、導体内部、空洞でも電場はゼロと理解しております。これは、導体の自由電子が、そうなるように(導体内部、空洞での電場がゼロとなるように)動き、配置されたがために起こると考えておりますがいかがでしょうか。すると、非対称な形状の場合、あるところでは電子の密度が高く、あるところでは低い、という偏った電子分布になると考えているのですが、正しいでしょうか。

質問2
導体の内部に空洞があり、その空洞内に電荷をおきます。この場合でも、導体内部の電子が動き、最終的には、導体の内部と空洞内の電場がゼロになるのでしょうか。それとも、内部、または空洞内のいずれか、もしくは両方の電場はゼロにはならないのでしょうか。

質問2のきっかけはある問題集の例題です。その内容も添付の絵に示させて頂きました。
内容は、「二つの導体球がある。ひとつは空洞であり、空洞内にもうひとつの小さな導体球がある(二つの球体は中心を共有している)。その中心から8cmの距離にある点Pでの電場が15000 N/C(方向は中心向き)であった。このとき、小さな導体球の総電荷Q1と、大きな導体球の空洞の内壁表面の総電荷量Q2を求めよ。(注意)Q2は、内壁表面の電荷量であって、大きな導体球の総電荷量ではない。」

というものです。この問題を見たときに、まず、質問2にて申し上げた、「導体の空洞では電場は0」という安直に覚えていたものが崩壊しました。どうやら「導体の空洞では電場は0」というのはあくまでその空洞に電荷が無い場合のことのようだと、今では理解しております。

そして、この例題の解答は、次の通りでした。
「導体の空洞では電場は0」にも関わらず、小さな導体球が存在することよって、P点の電場が形成されている。半径8cmのガウス面を考える。すると
電場 = ガウス面内の総電荷量 Q /(ガウス面の面積 4πr^2 x 誘電率ε) ・・・・(1)
よりもとまる、QがQ1となる (ただし、電場の方向から考えて、Q1は負の値)

一方で、「導体の内部の電場は0」である。大きな導体球の内部を通るガウス面を考える。(1)において、電場 = 0を代入すると、このガウス面内の総電荷量は正味ゼロとならなければならない、したがって、Q2はQ1と正負符号逆で絶対値の等しい値、つまり-Q1、となる。

この解答方法が引っかかりました。Q1を求める前半の解説では、小さな導体球によって、空洞内の電場はゼロではなくなっている、としているのにも関わらず、Q2を求める後半の解説では、小さな導体球の影響など触れもせず、「導体内部の電場は0」としてしまっております。なぜ、小さな導体球に影響を受けて、空洞で電場は生じるのに、大きな導体球の内部に電場が生じないのでしょうか。

文章が分かり難いようでしたら、書き直しますゆえ、お知らせ下さい。
どうか宜しくお願い致します。

「導体の電子分布 / 空洞のある導体に電荷」の質問画像

このQ&Aに関連する最新のQ&A

A 回答 (4件)

質問1



すべてお考えのとおりです。

質問2

このとき,空洞内の電場はゼロになりません。空洞内の電荷を包むようにガウス面を考えれば,そこを内部の電荷に対応する電気力線が通過しているはずですね? それでもなおかつ,導体内部は電場ゼロになるように自由電子が再配置します。したがってこのとき,空洞の内壁に電荷が生じることになります。空洞内電荷をQ>0 とするとそこから出た電気力線は,導体の内壁で終わらなければならないので,空洞の内壁に生じる電荷の合計は-Qになるのです。このあたりは,ガウスの法則の図形的な(電気力線の)イメージを活用することで,計算以前にたちどころに理解されるべきことです。この「イメージ」こそがガウスの法則の「強み」なのですから。

導体球内部が電場ゼロになるのは,静電場では強い要請です。導体球内部にある自由電子の数は,静電誘導によって尽きることはありません。外部電場がいくら強くても,力を受けた電子が移動することによって電荷が偏り,内部は電場ゼロになるのです。今,一瞬内部に電場ゼロでない領域が生じたとします。すると,その領域にある電子は動かされますね? たちどころに電子が動いてその領域は電場ゼロにならざるをえないのです。
    • good
    • 0
この回答へのお礼

いつも丁寧にご説明頂きありがとう御座います。

(1)導体内部の電場をゼロにするように自由電子が移動することは起きるが
(2)導体内の空洞の電場をゼロにするように自由電子が移動することはおきない

ということかと思うのですが、なぜこうなるのか、yokkun831様の回答から得た私の理解を述べさて下さい。

(1)について。電場が導体内部に存在するとそれによって自由電子が力を受けて
移動してしまう。移動がすべて止まるには(平衡に達するには)、電場が無いという状態になるしかない。
(2)について。導体内部の空洞に電場があっても、それによって導体内の自由電子が力を受けるわけではないため、自由電子が移動する理由が無い(ドライビングフォースがない)。しかし、空洞内に電荷があるとその電荷が導体内に電場を作ろうとする、しかしすると自由電子が力を受けて移動を始める。自由電子の移動が終わるのは(平衡に達するのは)、導体内部の電場がゼロになるように自由電子が分配されたときであり、やはり結局のところ導体内部の電場はゼロとなる。このとき、空洞内の電場がゼロになる(ことはあるかもしれないが)とは限らない。

いかがでしょうか。
電磁気は目に見えないものを扱うことが多く、また積分を使う機会が多く、私の理解が足りないかもしれませんが、どうぞ宜しくお願いします。

お礼日時:2011/11/07 20:08

>いかがでしょうか。


>電磁気は目に見えないものを扱うことが多く、また積分を使う機会が多く、私の理解が足りないかもしれませんが、どうぞ宜しくお願いします。

ほぼ完璧な理解をされていると思います。ガウスの法則は図形的イメージを豊かに持てば,大変わかりやすく納得のいく法則です。源(source)である電荷から力線が生じて,その力線密度に応じた電場(field)ができる。力線は正電荷から出て必ず負電荷に入る…等々。力線はファラデーの「発明」ですが,ファラデーが数学的な技巧を弄せず(というより知らなかった?)力線のイメージだけで現在に通用する場の法則をおおまかながら正しく認識していたことは驚きに値します。

さらに,電荷と場の重ね合わせの原理を使いこなせると,さらに理解が深まると思います。導体内の空洞に電荷があるとき,導体内外にできる電場は,空洞にある電荷のつくる場と導体に生じる誘導電荷のつくる場の重ね合わせになります。その結果導体内部のみ電場はゼロになります。
    • good
    • 0
この回答へのお礼

更なるご返答、ありがとう御座います。こうして確認して頂けると安心します。
回答者様にはこれまで何度も助けて頂きました。

電磁気については、いくつか不明な点が残っており、なるべく自分で考えておりますが、力学と異なり、解答・考えが本当にあっているのか、確認できない、想像できないところが電磁気の辛いところであり、苦手意識をもつ理由ではないかと思います(力学は肉眼で確認できることが多く、計算や解答は、日常の現象の確認をする、という傾向があるように思います)。恐縮ながら、これから、同時に何度もご質問させていただくこともあろうかと思いますが、どうぞ宜しくお願い致します。重ねましていつもありがとう御座います。

お礼日時:2011/11/07 21:28

すいません、#2で「導体内の任意の位置に電荷が固定されている場合には、必ずしも正しくありません」などと書いてしまったのですが、これは私の勘違いでした。


その場合でも自由電子がそこに集まって電場は打ち消されますね。
訂正します。
    • good
    • 0
この回答へのお礼

ありがとう御座います。助かりました。

お礼日時:2011/11/07 20:09

まず、前提として、導体内の電場は、静的な状態においてはゼロになります。


これは、導体の性質から導かれる、基本的な性質です。
(ただし、導体内に電荷が自由電荷しか存在しえない場合の話であって、導体内の任意の位置に電荷が固定されている場合には、必ずしも正しくありません。以降、そのようなことはないとします)

さらに、一般に、「ある領域内に電荷が存在せず、またその全ての境界上で電位が一定ならば、その領域内での電場はゼロである」ことが示せます。
これから、単一の(繋がった)導体で囲まれた空洞内に電荷が存在しないならば、静的な状態においてその空洞内の電場はゼロであることが分かります。


> 小さな導体球によって、空洞内の電場はゼロではなくなっている、としているのにも関わらず、Q2を求める後半の解説では、小さな導体球の影響など触れもせず、「導体内部の電場は0」としてしまっております。なぜ、小さな導体球に影響を受けて、空洞で電場は生じるのに、大きな導体球の内部に電場が生じないのでしょうか。
静的な状態では導体内に電場は生じていない、というのは、導体の性質から導かれる事実であり、常に成り立ちます。
一方で、導体に囲まれた空洞内の電場がゼロになるためには、上に述べたような条件が必要になります。
この場合では、空洞の内側の境界と外側の境界とで電位が異なるために、上で述べた「全ての境界上で電位が一定である」という条件を満たしていませんので、空洞内に電場が発生しえます。
逆に言えば、空洞内に電場が発生していることから、二つの導体球の電位が異なると判断できます。
    • good
    • 0
この回答へのお礼

丁寧にご説明頂きありがとう御座いました。私の理解を助けていただきました。

お礼日時:2011/11/07 20:09

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q線電荷による電位

単位長さあたりq[C]の無限直線の線電荷から距離aだけ離れた点の電位を求めたいのですが。
電界はE=q/4πε0a[V/m]となったのですが、ここから電位を求めるにはどうすればいいのでしょうか?点電荷だと-∫[∞→r]Edrというような感じで求めることができると思いますが、線電荷の場合はどうなのでしょう?

Aベストアンサー

電位の基準点は断りがなければ無限遠点にとるのが普通です.
これは,無限遠点はどこから見ても無限遠点なので,
電荷が複数あった場合に基準点を共通に取れると言うことから来ています.
電位というのは標高みたいなものですから,
2つ以上の電荷があるときには基準点を統一しないと直接比較ができないことになります.

でも今の場合は基準点を無限遠点に取ると電位が発散してしまいますので,
この種の問題では「ただし,電位の基準点は線電荷から距離 R の場所とする」
というような但し書きがあるのが普通です.
但し書きがなければ,自分で
「電位の基準点をは無限遠点に取るのが通常だが,
今はそうできないので距離 R の点を基準にした」
などと書いておけば文句のつけようはないでしょう.

電位を単なる電界の不定積分にするのは(少なくとも私は)感心できません.

Q同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

Aベストアンサー

基本的な考え方だけ説明します。
「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)

Q同心球導体球の接地について

同心球導体球の接地について、過去に質問されていなかったのでおねがいします。
同心球導体球において、外側の球に電荷Qを与え、内側の球を接地した場合、電界はどのようになるのでしょうか?
(内側の球の半径a、外側の球の内径b、外径cです。)
回答は、
a<r<b、c<rの場合についてお願いします。

Aベストアンサー

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷) + Q - Q'(外側の球の表面電荷) = Q - Q'
  半径 r の球面上の電界を E1(r) とすれば、Gaussの定理より、4*π*r*E1(r) =( Q - Q')/ε → E1(r) = ( Q - Q' )/( 4*π*ε*r^2 ) ---[1]
  半径 r の球面上の電位を V1(r) とすれば、V1(r) = ∫[r~∞] E1(r) dr = ( Q - Q' )/( 4*π*ε*r )
  外側の球の表面電位は V1 = V1(c) = ( Q - Q' )/( 4*π*ε*c )

  内球と外球の間にある半径 r ( a<r<b ) の球面を考えると、その球面に含まれる電荷は、内側の球の表面電荷 -Q' だけだから、
  半径 r の球面上の電界を E2(r) とすれば、Gaussの定理より、4*π*r*E2(r) = - Q'/ε → E2(r) = -Q'/(4*π*ε*r^2) --- [2]
  半径 r の球面上の電位を V2(r) とすれば、V1 - V2(r) =∫[r~b] E2(r) dr = -Q'/(4*π*ε)*( 1/b - 1/r ) 。
  式[3]から、V1 =( Q-Q' )/( 4*π*ε*c ) なので、V2(r) = V1 + Q'/(4*π*ε)*( 1/b-1/r ) = ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/r )
  内側の球は接地されているので、V2(a) = 0  →  ( Q-Q' )/( 4*π*ε*c ) + Q'/(4*π*ε)*( 1/b - 1/a ) = 0
  したがって、Q' = Q/{ c* ( 1/a - 1/b + 1/c ) } = Q/{ 1 + c*( 1/a - 1/b ) } --- [3]

(3)電界分布
  式[3]を式[1],[2] に代入すれば
  E1(r) = ( Q-Q' )/( 4*π*ε*r^2 ) = Q*[ 1 - 1/{ 1 + c*( 1/a - 1/b ) } ]/( 4*π*ε*r^2 ) = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  E2(r) = -Q'/(4*π*ε*r^2) = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(4)まとめ
  a<r<b のとき、E = Q*c*/[ { a*b/( a - b ) + c }*4*π*ε*r^2 ]
  c<r  のとき、 E = -Q/[ { 1 + c*( 1/a - 1/b ) }*4*π*ε*r^2 ]

(1)内球と外球の電荷
  外側の球の表面に電荷 Q を与えたとき、内側の球の表面に-Q'の電荷が誘起されるとします。
  すると、外側の球の裏面(内面)には Q' の電荷が誘起されます。このとき外側の球の表面の電荷を Q'' とすれば、外側の球の電荷の総量は Q なので、 Q' + Q'' = Q → Q'' = Q - Q'

(2)Q' を求める
  外球の外側にある半径 r ( c < r ) の球面を考えると、その球面に含まれる電荷は、内外の球の電荷の総和で、その値は
  -Q'(内側の球の表面電荷) + Q'(外側の球の裏面電荷...続きを読む

Q導体内の電場はなぜ0?

導体の定義から、導体の内部には電場は存在しない、とあるのですが、いまいちピンと来ません。なぜ、そう言えるんでしょか…?

また、ある問題で、ある導体球に正の電荷Qが与えられていて、電荷は球の表面に、対称に分布している。という問題文があり、その回答には、「導体球の表面に電荷Qが分布しているので、半径rの球の内側には電荷はない」と解説があるのですが、言っていることは同じだと思うのですが、これもよく分かりません…。なぜ表面にQ帯電していると、内側には電荷がないのでしょう?何となく負の電荷がありそうな気がするのですが…?

とても頭の中で混乱しているのかもしれません。よろしくお願いします。

Aベストアンサー

#2です
「「内部で自由に移動でき」ていた電荷」は結局導体表面に(内部が棟電位になるように)集まります。
(導体表面では、電荷はそこから外側には移動できない(自由には移動できなくなる)ので。)

導体内部と表面では、電荷の動ける自由度が変わります。

Q導体で同心の外球、内球があり内球が接地されています。

http://oshiete1.goo.ne.jp/qa3031710.html

ここの問題の条件で、内外球の静電容量を求めよという問題があります。今やっている問題とほぼ一致した条件なので引用させてもらいました。

僕自身、接地するということがいまいちどういうことなのか理解できていない感じなのですが、
引用した質問の電界の答えから、内外球の電位差を求めてC=Q/Vという定義から静電容量を求めたところ、答えと一致しました。

そこで疑問がわいたのですが、C=Q/Vの定義が使えるのは外球と内球にそれぞれ-Q、+Qの電荷を与えているときと教科書に書いてありました。

この問題だと、外球にQの電荷を与えているだけで、内球には-Q'の電荷が誘起されています。
なぜC=Q/Vの定義から答えが算出できたのでしょうか?

電磁気学の理解に乏しいので詳しく教えていただきたいです。

Aベストアンサー

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在することになります.

上の孤立球の問題も,無限遠から孤立球に電荷 Q を移したと考えればよろしい.
そうすると,孤立球に +Q の電荷があるわけで,無限遠との電位差 Q/4πε_0 a から
Q = CV にしたがって C = 4πε_0 a と容量が求まります.

さて,今の問題で内球を接地したというのは内球と無限遠を導線でつないだ,
つまり内球と無限遠との電位差を同じにしたことを意味します.
で,上の解釈に従えば,内球と無限遠から外球(正確には外球殻)へ電荷 Q を移すことになります.
外球殻には内側表面に電荷に +Q' ,外側表面に +Q'' が分布します.
記号は引用された
http://oshiete1.goo.ne.jp/qa3031710.html
に従っています.
内球には -Q',無限遠には -Q'' があることになりますが,
Q' と Q'' の割合は2つの電位差,すなわち外球殻と内球の電位差,および外球殻と無限遠の電位差が
等しくなるように決まります.
内球と無限遠は導線で結ばれていますから電位は同じでないといけないのです.
もし,内球からのみ電荷を外球殻に移しても,
内球と無限遠は導線で結ばれていますから電荷は自由に行き来できるので,
上の条件に従うように勝手に電荷が移動します.
引用された inara さんのご回答はこうやって Q' と Q'' を決めています.

図で表すなら

          │
      ┌───┴───┐
      │       │
      │       │
外球殻内側─┴─     ─┴─外球殻外側
                    
   内球─┬─     ─┬─無限遠
      │       │
      │       │
      └───┬───┘
          │

と思えばよいでしょう.
実際,求めた容量は2つのコンデンサーの容量を合成したものになっていますので,
それもご確認下さい.

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在するこ...続きを読む

Q電荷が球殻内に一様に分布する問題について

「 内半径a,外半径bの球殻(aくb)があり,球殻の中心からの距離rとする.電荷Qが球殻部分(aくrくb)に一様に分布しているとき,電界と電位を求めよ.また,rくa,bくrは真空として真空の誘電率をε0する.」
という問題です.
この問題は試験問題だったため回答がないので,一応参考書などを読んで似たような問題を見たりしたのですが,今一つ理解できません.
もしよろしかったら,どなたか教えていただけないでしょうか?
よろしくお願いします.

Aベストアンサー

hikamiuさんが既にお答えされていますので、以下は具体的な計算のやり方についての話です。計算のやり方は大学の先生のご好意による講義ノート(参考URL)が公開されていますので、そこの7の6を参照してみてください。もっともその前に講義ノートの6の5で少し計算の地ならしをしてから進まれたほうが理解が速いかもしれません。

参考URL:http://www-d.ige.solan.chubu.ac.jp/goto/docs/djk1/p0idxA.ssi

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q無限に長い円筒の側面上に電荷が一様な面密度

半径Rの無限に長い円筒の側面上に電荷が一様な面密度σで分布しているとき、ガウスの法則を用いて生じた電場を求めよ。

以下参考書の解説
 閉曲面Sとして、電荷の分布する円筒と同軸の半径r、長さLの円筒面を選ぶ。Sについての電場Eの面積分はE2πrL
 Sの内部に含まれる電荷はr<Rのとき0、r >Rのときσ2πRL
 よって、ガウスの法則より、E=0(r<R)、σR/εr(r >R)

なぜ、Sの内部に含まれる電荷はr >Rのときσ2πRLなんですか?
なぜ、E=σR/εr(r >R)なんですか?

詳しい解説お願いします。

Aベストアンサー

>Sの内部に含まれる電荷はr >Rのときσ2πRLなんですか?

問題の定義どおりです。

面密度 x 円筒の表面積 = σ x 2πRL

>なぜ、E=σR/εr(r >R)なんですか?

ガウスの法則から

電場=電荷量/(ε局面Sの側面積) = σ x 2πRL/(ε2πrL)=σR/(εr)

Q接地した同心導体球の問題について・・・

同心導体球において、内球半径a[m],球殻半径b[m],外球半径c[m]と与えられている。
内球の電荷Q1=5*10^-10,外球の電荷Q2=-4*10^-10であり、外球は接地している。
このとき、r>cの範囲における、rの電界と電位を表せ。
と言う問題なのですが、

接地という概念についていまいち理解することができません。
まず、接地しているという条件から、おそらく電位は0[V]であると思います。
そして、r>vにおける電界を考えると、内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
E=(Q1+Q2)/(4πεr^2)[V/m]によって求めることができるのでしょうか。

更に問題では、内側の導体と外側の導体の電位差を求めよ。と続きます。
外球が接地しているという条件より、外側の導体の電位は0[V]となることは分かります。
しかし、内球の電位を考えた場合、
通常、グランドに繋がっていない場合は
V=((+Q1)/(4πεa))+((-Q1)/(4πεb))+((Q1+Q2)/(4πεc))
となると思うのですが、
r>cにおける電位は0[V]だと先ほど求めたため、
V=((+Q1)/(4πεa))+((-Q1)/(4πεb))+0
とも考えられる気がします。

グランドに繋ぐことで、((Q1+Q2)/(4πεc))の値は消えてしまうのでしょうか。
この問題は、以前の試験問題だったようで、回答がないので、はっきりとした答えが分かりません。

どなたか可能でしたらお返事お願いします。

同心導体球において、内球半径a[m],球殻半径b[m],外球半径c[m]と与えられている。
内球の電荷Q1=5*10^-10,外球の電荷Q2=-4*10^-10であり、外球は接地している。
このとき、r>cの範囲における、rの電界と電位を表せ。
と言う問題なのですが、

接地という概念についていまいち理解することができません。
まず、接地しているという条件から、おそらく電位は0[V]であると思います。
そして、r>vにおける電界を考えると、内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
E=(Q1+Q2)/(4πεr^2)[V/m]に...続きを読む

Aベストアンサー

eatern27 さん:
> 半径a,b,cの球殻が3つあるという事でいいですか?

半径 a の導体球(中まで詰まっている)と
内径 b ,外径 c の導体球殻という系のことでしょう.
すなわち,0<r<a の部分と b<r<c の部分が導体です.

> そして、r>vにおける電界を考えると、
> 内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
> E=(Q1+Q2)/(4πεr^2)[V/m]によって求めることができるのでしょうか。

そうはなりません.
球殻を接地したのですから球殻の電位はゼロ,
球殻と無限遠の間の電場はゼロのはずです.
つまり,問題の前半の答は計算するまでもなく明らかでした.

多少詳しく見てみます.
まず,導体内では電場はゼロですから
0<r<a と b<r<c では E=0 です.
内側の球に与えた電荷 Q1 は導体表面に均等に分布します.
したがって,a<r<b では Gauss の法則からわかりますように,
電場は E=Q/4πεr^2 です.
Q1 の電荷が中心にあるように見えます.

次に,外側の球殻に与えた電荷は導体表面に分布するのですが,
球殻内側と無限遠に分かれて分布します.
外側球殻を接地していますからこうなります.
もし設置していなければ,内側表面(r=b)と外側表面(r=c)に分かれて分布します.
さて,半径 r が b<r<c であるような球面に Gauss の法則を適用してみます.
導体内では電場がゼロですから当然電場の面積分もゼロです.
これが半径 r の球内の電荷総量の 1/ε に等しいというのが Gauss の法則ですから,
半径 r の球内の電荷総量はゼロです.
内側の球に Q1 だけ電荷が分布しているのですから,
球殻の内側表面(r=b)には -Q1 だけの電荷が分布していないといけません.
球殻には Q2 の電荷を与えたのですから,
Q2+Q1 だけどこかにないといけないわけで,
Q2+Q1 は接地した線を伝わって無限遠まで逃げていきます.
つまり,球殻外側表面(r=c)には電荷はありません.

今度は r>c の球面に Gauss の定理を適用します.
内部の電荷総量はゼロですから,電場もゼロです.
導体球殻と無限遠とは同電位ですから(接地!),
その間で電場が存在しないのは当然です.
これは最初に述べました.

まとめますと,
0<r<a では E=0
a<r<b では E=Q/4πεr^2
b<r    E=0
です.

----------------------

もし,外側の球殻を接地していなければ以下のようになります.
今度は導体球殻外側表面(r=c)に Q2+Q1 の電荷が均等に分布します
(つまり,接地していないので,これ以上遠くに逃げられない).
r>c の球面に Gauss の定理を適用したときに,
内部の電荷総量は Q2 になりますから
0<r<a では E=0
a<r<b では E=Q1/4πεr^2
b<r<c   E=0
c<r  では E=Q2/4πεr^2

----------------------

電場がわかれば電位の計算は大丈夫ですよね.
それから,電荷 Q1=5*10^-10 などに単位が抜けていますね.

eatern27 さん:
> 半径a,b,cの球殻が3つあるという事でいいですか?

半径 a の導体球(中まで詰まっている)と
内径 b ,外径 c の導体球殻という系のことでしょう.
すなわち,0<r<a の部分と b<r<c の部分が導体です.

> そして、r>vにおける電界を考えると、
> 内側の電位の合計「Q1+Q2」の点電荷が球の中心にあると考え
> E=(Q1+Q2)/(4πεr^2)[V/m]によって求めることができるのでしょうか。

そうはなりません.
球殻を接地したのですから球殻の電位はゼロ,
球殻と無限遠の間の電場はゼロのは...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング