

こんにちは、二つお伺いします。
絵を用意したのですが、アップして画質が落ちることがよくあるようなので、その場合はご了承下さい。
質問1
導体内部は電場がゼロである、と理解しております。たとえ、導体内部に空洞があっても、空洞での電場もゼロ、そして導体がどんな非対称な形状をしていようともやはり、導体内部、空洞でも電場はゼロと理解しております。これは、導体の自由電子が、そうなるように(導体内部、空洞での電場がゼロとなるように)動き、配置されたがために起こると考えておりますがいかがでしょうか。すると、非対称な形状の場合、あるところでは電子の密度が高く、あるところでは低い、という偏った電子分布になると考えているのですが、正しいでしょうか。
質問2
導体の内部に空洞があり、その空洞内に電荷をおきます。この場合でも、導体内部の電子が動き、最終的には、導体の内部と空洞内の電場がゼロになるのでしょうか。それとも、内部、または空洞内のいずれか、もしくは両方の電場はゼロにはならないのでしょうか。
質問2のきっかけはある問題集の例題です。その内容も添付の絵に示させて頂きました。
内容は、「二つの導体球がある。ひとつは空洞であり、空洞内にもうひとつの小さな導体球がある(二つの球体は中心を共有している)。その中心から8cmの距離にある点Pでの電場が15000 N/C(方向は中心向き)であった。このとき、小さな導体球の総電荷Q1と、大きな導体球の空洞の内壁表面の総電荷量Q2を求めよ。(注意)Q2は、内壁表面の電荷量であって、大きな導体球の総電荷量ではない。」
というものです。この問題を見たときに、まず、質問2にて申し上げた、「導体の空洞では電場は0」という安直に覚えていたものが崩壊しました。どうやら「導体の空洞では電場は0」というのはあくまでその空洞に電荷が無い場合のことのようだと、今では理解しております。
そして、この例題の解答は、次の通りでした。
「導体の空洞では電場は0」にも関わらず、小さな導体球が存在することよって、P点の電場が形成されている。半径8cmのガウス面を考える。すると
電場 = ガウス面内の総電荷量 Q /(ガウス面の面積 4πr^2 x 誘電率ε) ・・・・(1)
よりもとまる、QがQ1となる (ただし、電場の方向から考えて、Q1は負の値)
一方で、「導体の内部の電場は0」である。大きな導体球の内部を通るガウス面を考える。(1)において、電場 = 0を代入すると、このガウス面内の総電荷量は正味ゼロとならなければならない、したがって、Q2はQ1と正負符号逆で絶対値の等しい値、つまり-Q1、となる。
この解答方法が引っかかりました。Q1を求める前半の解説では、小さな導体球によって、空洞内の電場はゼロではなくなっている、としているのにも関わらず、Q2を求める後半の解説では、小さな導体球の影響など触れもせず、「導体内部の電場は0」としてしまっております。なぜ、小さな導体球に影響を受けて、空洞で電場は生じるのに、大きな導体球の内部に電場が生じないのでしょうか。
文章が分かり難いようでしたら、書き直しますゆえ、お知らせ下さい。
どうか宜しくお願い致します。

No.1ベストアンサー
- 回答日時:
質問1
すべてお考えのとおりです。
質問2
このとき,空洞内の電場はゼロになりません。空洞内の電荷を包むようにガウス面を考えれば,そこを内部の電荷に対応する電気力線が通過しているはずですね? それでもなおかつ,導体内部は電場ゼロになるように自由電子が再配置します。したがってこのとき,空洞の内壁に電荷が生じることになります。空洞内電荷をQ>0 とするとそこから出た電気力線は,導体の内壁で終わらなければならないので,空洞の内壁に生じる電荷の合計は-Qになるのです。このあたりは,ガウスの法則の図形的な(電気力線の)イメージを活用することで,計算以前にたちどころに理解されるべきことです。この「イメージ」こそがガウスの法則の「強み」なのですから。
導体球内部が電場ゼロになるのは,静電場では強い要請です。導体球内部にある自由電子の数は,静電誘導によって尽きることはありません。外部電場がいくら強くても,力を受けた電子が移動することによって電荷が偏り,内部は電場ゼロになるのです。今,一瞬内部に電場ゼロでない領域が生じたとします。すると,その領域にある電子は動かされますね? たちどころに電子が動いてその領域は電場ゼロにならざるをえないのです。
いつも丁寧にご説明頂きありがとう御座います。
(1)導体内部の電場をゼロにするように自由電子が移動することは起きるが
(2)導体内の空洞の電場をゼロにするように自由電子が移動することはおきない
ということかと思うのですが、なぜこうなるのか、yokkun831様の回答から得た私の理解を述べさて下さい。
(1)について。電場が導体内部に存在するとそれによって自由電子が力を受けて
移動してしまう。移動がすべて止まるには(平衡に達するには)、電場が無いという状態になるしかない。
(2)について。導体内部の空洞に電場があっても、それによって導体内の自由電子が力を受けるわけではないため、自由電子が移動する理由が無い(ドライビングフォースがない)。しかし、空洞内に電荷があるとその電荷が導体内に電場を作ろうとする、しかしすると自由電子が力を受けて移動を始める。自由電子の移動が終わるのは(平衡に達するのは)、導体内部の電場がゼロになるように自由電子が分配されたときであり、やはり結局のところ導体内部の電場はゼロとなる。このとき、空洞内の電場がゼロになる(ことはあるかもしれないが)とは限らない。
いかがでしょうか。
電磁気は目に見えないものを扱うことが多く、また積分を使う機会が多く、私の理解が足りないかもしれませんが、どうぞ宜しくお願いします。
No.4
- 回答日時:
>いかがでしょうか。
>電磁気は目に見えないものを扱うことが多く、また積分を使う機会が多く、私の理解が足りないかもしれませんが、どうぞ宜しくお願いします。
ほぼ完璧な理解をされていると思います。ガウスの法則は図形的イメージを豊かに持てば,大変わかりやすく納得のいく法則です。源(source)である電荷から力線が生じて,その力線密度に応じた電場(field)ができる。力線は正電荷から出て必ず負電荷に入る…等々。力線はファラデーの「発明」ですが,ファラデーが数学的な技巧を弄せず(というより知らなかった?)力線のイメージだけで現在に通用する場の法則をおおまかながら正しく認識していたことは驚きに値します。
さらに,電荷と場の重ね合わせの原理を使いこなせると,さらに理解が深まると思います。導体内の空洞に電荷があるとき,導体内外にできる電場は,空洞にある電荷のつくる場と導体に生じる誘導電荷のつくる場の重ね合わせになります。その結果導体内部のみ電場はゼロになります。
更なるご返答、ありがとう御座います。こうして確認して頂けると安心します。
回答者様にはこれまで何度も助けて頂きました。
電磁気については、いくつか不明な点が残っており、なるべく自分で考えておりますが、力学と異なり、解答・考えが本当にあっているのか、確認できない、想像できないところが電磁気の辛いところであり、苦手意識をもつ理由ではないかと思います(力学は肉眼で確認できることが多く、計算や解答は、日常の現象の確認をする、という傾向があるように思います)。恐縮ながら、これから、同時に何度もご質問させていただくこともあろうかと思いますが、どうぞ宜しくお願い致します。重ねましていつもありがとう御座います。
No.2
- 回答日時:
まず、前提として、導体内の電場は、静的な状態においてはゼロになります。
これは、導体の性質から導かれる、基本的な性質です。
(ただし、導体内に電荷が自由電荷しか存在しえない場合の話であって、導体内の任意の位置に電荷が固定されている場合には、必ずしも正しくありません。以降、そのようなことはないとします)
さらに、一般に、「ある領域内に電荷が存在せず、またその全ての境界上で電位が一定ならば、その領域内での電場はゼロである」ことが示せます。
これから、単一の(繋がった)導体で囲まれた空洞内に電荷が存在しないならば、静的な状態においてその空洞内の電場はゼロであることが分かります。
> 小さな導体球によって、空洞内の電場はゼロではなくなっている、としているのにも関わらず、Q2を求める後半の解説では、小さな導体球の影響など触れもせず、「導体内部の電場は0」としてしまっております。なぜ、小さな導体球に影響を受けて、空洞で電場は生じるのに、大きな導体球の内部に電場が生じないのでしょうか。
静的な状態では導体内に電場は生じていない、というのは、導体の性質から導かれる事実であり、常に成り立ちます。
一方で、導体に囲まれた空洞内の電場がゼロになるためには、上に述べたような条件が必要になります。
この場合では、空洞の内側の境界と外側の境界とで電位が異なるために、上で述べた「全ての境界上で電位が一定である」という条件を満たしていませんので、空洞内に電場が発生しえます。
逆に言えば、空洞内に電場が発生していることから、二つの導体球の電位が異なると判断できます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
在宅ワークのリアルをインタビュー
ベテラン在宅ワーカーと 在宅ビギナーの方々に、在宅ワークの実情をお教えいただきました。
-
ガウスの法則の問題
物理学
-
導体球殻の電位
物理学
-
電荷が球殻内に一様に分布する問題について
物理学
-
4
中空導体球の問題です! 至急よろしくお願いします
物理学
-
5
同心球導体球の接地について
物理学
-
6
導体内の電場はなぜ0?
物理学
-
7
e^(x^2)の積分に関して
数学
-
8
直線導体の中に穴があるときの穴の内部磁界
物理学
-
9
積分で1/x^2 はどうなるのでしょうか?
数学
-
10
導体球の問題
物理学
-
11
球の電場においての問題で・・・
物理学
-
12
導体で同心の外球、内球があり内球が接地されています。
その他(自然科学)
-
13
電荷が与えられた球の持つ静電エネルギーについて。
物理学
-
14
電磁気の問題です。お願いします。
物理学
-
15
∫1/(x^2+1)^2 の不定積分がわかりません
数学
-
16
偏微分の記号∂の読み方について教えてください。
数学
-
17
3配位の限界半径比の求め方
化学
-
18
導体球殻に関する問題が分かりません
物理学
-
19
電磁気学
物理学
-
20
無限長直線電荷による電位
物理学
関連するQ&A
- 1 導体を静電場の中に置くと導体内部の電荷が電気力を受けて移動し,その移動が終わって安定したとき ①導体
- 2 図のように球導体と球導体を包む殻の導体があり、この外側の導体に電荷Qを与えます。 中の球導体を接地す
- 3 平行に置いた三つの導体について それぞれに適当に電荷を与えた時図のように向かい合う面はなぜ同じ電荷が
- 4 コンデンサの片側板の電荷分布 / 球状導体の分極
- 5 (導体球でない)球の中に一様に電荷が分布しているときの静電エネルギー
- 6 電磁気についての質問です。 外径a,内径bの導体円環の真ん中に-Qを置いた。この時の内壁と外壁の電荷
- 7 (2)で内導体に誘導される電荷qは、外導体に与えられたQを用いてq=-Qで合ってますか?自信がないで
- 8 電荷Qを持った半径Rの球を考える。 電荷が球内に密度ρで一様に分布しているとき、球内(r<R)ではE
- 9 核子の電荷分布、磁気能率分布について
- 10 自由電子とホール(正孔) 、「正電荷と負電荷」の考え方
おすすめ情報
このQ&Aを見た人がよく見るQ&A
人気Q&Aランキング
-
4
電磁気学の電位係数の問題なの...
-
5
円柱?の磁束密度を求める問題...
-
6
同軸ケーブルの減衰量の計測方...
-
7
導線で繋がれた極板はなぜ等電...
-
8
円筒導体について
-
9
BNCコネクタの見分け方
-
10
内球(r=a) と外球殻(内半径b 外...
-
11
空気の絶縁耐力について
-
12
等電位線と電気力線という実験...
-
13
表皮効果の原理について
-
14
高校物理、電磁誘導
-
15
CVの電流と温度上昇の計算方法
-
16
磁性体は導体か
-
17
ビオ・サバールの法則の式の意味
-
18
物理 電荷が電場から受ける力 F...
-
19
アースされた電気の行く末は?
-
20
電圧を掛けるとはどういう状態...
おすすめ情報