プロが教えるわが家の防犯対策術!

電磁気学の問題です。初心者なので、ヒントだけでもいただけるとありがたいです。

写真のようにB,Cは接地された無限に広い導体、Aは面積密度σの電荷でそれぞれの間隔が与えられています。そこで、各部における電界を求めよという問題です。

B,C二つの導体は無限平面なので、ガウスの定理より電界は距離に無関係で、平等電界E=σ/2ε0となると思うのですがどうでしょうか?また、導体B,Cが接地されているとBC間電位差は0となるんでしょうか?その場合、電界は発生するのでしょうか?

質問ばかりですいません。回答よろしくお願いします。

「無限に広い導体間の電界」の質問画像

A 回答 (4件)

#1さん回答にあるように、B,C表面に誘導される電荷を考慮する必要があります。


計算の方法は何通りかありますが、例えば、

方法1. B,Cの表面の電荷をσB,σCとすると、それぞれ左右にσB/(2ε),σC/(2ε)の電界を作っている。
各部の電界はこの3つの電界の合成で表される。
Bの外側(Aの反対面)の電界は 、(-σB-σ-σC)/(2ε)=0からσB+σC=σ。
BA間の電界は、EAB=(σB-σ-σC)/(2ε)。
AC間の電界は、ECA=(σB+σ-σC)/(2ε)。
BとCが等電位なので、EAB*x+ECA*(d-x)=0。
これらから、σB,σCを計算して、EAB,EACを計算する。

方法2.
BA間の電界EB,AC間の電界ECを仮定する。
BとCが等電位なので、上記同様にEB*x+EC*(d-x)=0。
Aの位置でガウスの法則を適用すると、εEB-εEC=σ。
この連立方程式から、EB,ECを計算する。

計算が簡単なのは方法2の手順かなと思います。
    • good
    • 1

Aの電位をVとする(B,Cは電位0とする)。


AB間,AC間の電場は、問題設定から、それぞれ一様電場になっているのは明らか。
AB間の電場Eabは
Eab=V/x 式(ア)
AC間の電場Eacは
Eac=V/(d-x) 式(イ)
明らかに、Eab≠Eac
なので、Aの電荷面密度は、左右の面で異なることを意味している。
Aの、Bに面した面の電荷面密度をρ1,Cに面した側ではρ2だったとすると、ガウスの法則から
Eab=ρ1/ε 式(ウ)
Eac=ρ2/ε 式(エ)
Aの面電荷密度ρは
ρ=ρ1+ρ2 式(オ)
で表されるはず。
これらの関係から
ρ1/ρ2=(d-x)/x
ρ1=((d-x)/d)ρ
ρ2=(x/d)ρ
などの関係が認められるので
Eab=((d-x)/d)・(ρ/ε)
Eac=(x/d)・(ρ/ε)
V=((x・(d-x))/d)・(ρ/ε)
    • good
    • 0

>B,C二つの導体は無限平面なので、ガウスの定理より電界は距離に無関係で、平等電界E=σ/2ε0となると思うのですがどうでしょうか?



そのようにはなりません。導体内部での電場は"0"になりますので、導体内部と外部にまたがる底面積Sの円柱をとると
σS=ε0*E →  E=σ/ε0
となります。
導体表面近傍での電界は必ずこのような式で表すことが出来ます。


>また、導体B,Cが接地されているとBC間電位差は0となるんでしょうか?その場合、電界は発生するのでしょうか?

導体Bと導体Cの表面電荷密度が異なりますのでそのようなことはありません。
Aをはさんで逆向きの電界になればよいだけのことです。
BとAを含むように円柱をとりガウスの法則を適用すれば、Aの右側と左側で異なる電界になることはすぐにわかるでしょう。
    • good
    • 0

>平等電界E=σ/2ε0となると思うのですがどうでしょうか?



そうはならないでしょう。A-B間とA-C間の電位差が等しく,間隔が異なるので。B,Cへの誘導電荷とAの両面への電荷の配分を考慮すべきです。

>導体B,Cが接地されているとBC間電位差は0となるんでしょうか?その場合、電界は発生するのでしょうか?

両方が電位ゼロに設置されているのですから,B,Cは短絡されていると見てよいのです。結果的に図のような場合と等価です。
「無限に広い導体間の電界」の回答画像1
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q導体表面の電界

現在電磁気学を勉強している者です。
今回は、導体表面の電界について質問させて頂きます。
演習書を解いていたところ、下のようにわからなくなりました。

問題について書くと、

(某問題1)平行板形コンデンサの二枚の平行導体板に面密度±σが一様に分布している。。。。。以下省略。

で、σのつくる電界はガウスの法則から、
E=σ/ε0

(某問題2)接地された無限に広い平面の導体から距離aの位置に電気量Qの点電荷がある。。。。。以下省略。

で、解いていく最中、この平面の表面に誘起される面密度をσとし、σのつくる電界をガウスの法則で求めるが、解答をみると
E=σ/2ε0

(某問題3)無限に広い導体平面の上に一様な面密度σの電荷が分布している。。。。。。以下省略。

で、解答中、σによる電界は平面に垂直でその大きさは、
E=σ/ε0

(某問題4)液体の誘電体があり、その液中に導体の板が二枚がある距離をもって向き合っている。そして、導体間に電位差Vがある。2導体の引き合う力を求めよ。

で、+電極の真電荷密度をσ、それに接する液体面の分極電荷密度
をσpとすると、-電極にはそれぞれ、-σ、-σpの電荷が有る。+電極の力を求めるには-電極の-σと-σpがσに及ぼす力を考えればよい。-σと-σpだけがつくる電界は
E=(σ+σp)/2ε0

自分なりに推測したところ、

某問題1と3は、表面に垂直な微小円筒を仮想閉曲面とし、ガウスの法則を適用する。
導体内部では電界はゼロで、導体の外部に出ている閉曲面の部分を考えればよく、また、側面はE・dS=0。
従って、積分が残るのは上面だけであり、E=σ/ε0

某問題2と4では、微小円筒の仮想閉曲面が平面を貫いており、上の1と3における積分が上面と下面になり、
E=σ/2ε0

と考えました。

私の質問は、
・某問題1~4のEの求め方は私の推測で正しいでしょうか?
次に、私の推測が正しいかどうかわかりませんが、
・なぜ、2と4の問題では、下面の積分も残るのでしょうか?
 問題の条件文はそのまま上に書きましたが、私が何度読んでも、4つとも同じ条件に見えてしまいます。
この見極め方を教えて頂きたいです。

よろしくお願いします。

現在電磁気学を勉強している者です。
今回は、導体表面の電界について質問させて頂きます。
演習書を解いていたところ、下のようにわからなくなりました。

問題について書くと、

(某問題1)平行板形コンデンサの二枚の平行導体板に面密度±σが一様に分布している。。。。。以下省略。

で、σのつくる電界はガウスの法則から、
E=σ/ε0

(某問題2)接地された無限に広い平面の導体から距離aの位置に電気量Qの点電荷がある。。。。。以下省略。

で、解いていく最中、この平面の表面に誘起される面密度...続きを読む

Aベストアンサー

こんにちは。
あなたの疑問は、おそらく次の違いを明確にしていないことから
生じたものではないでしょうか。
導体平板が1枚か、2枚か、によって、その周囲にできる
電場の様子が違います。
(1)1枚の無限に広がった平板導体の場合
     E=σ/2ε
  ___________
|_+__+__+__+__|  電荷の面密度は+σとする。

     E=σ/2ε

(2)正負電荷を帯びたの2枚の無限に広い平行平板導体の場合
     E=0
  ___________
|_+__+__+__+__|  電荷の面密度は+σとする。

     E=σ/ε
  ___________
|_-__-__-__-__|  電荷の面密度は-σとする。

     E=0

(1)の電場の強さはガウスの法則で求まります。
それはあなたが推測された通りです。

(2)では、+の平板が作る電場と、-の平板が作る電場とを
重ね合わせることによって、そこに生じている電場を求めます。
2つの平板の間では、2つの電場は向きが同じなので、
強めあう重なりになります。
2つの平板の外側では、2つの電場は向きが逆なので、
弱めあう重なりになります。

こんにちは。
あなたの疑問は、おそらく次の違いを明確にしていないことから
生じたものではないでしょうか。
導体平板が1枚か、2枚か、によって、その周囲にできる
電場の様子が違います。
(1)1枚の無限に広がった平板導体の場合
     E=σ/2ε
  ___________
|_+__+__+__+__|  電荷の面密度は+σとする。

     E=σ/2ε

(2)正負電荷を帯びたの2枚の無限に広い平行平板導体の場合
     E=0
  ___________
|_+__+__+...続きを読む

Q同心球殻状の導体から作られるコンデンサー 電場 電位差 電気容量

半径aと半径b(a<b)の同心球殻状の導体から作られるコンデンサーを考える。
外側球殻が電荷Qを帯び、内側球殻が電荷-Qを帯びているとし、以下の問いに答えよ。
(1)外側球殻と内側球殻にはさまれた領域の電場を求めよ。
(2)外側球殻と内側球殻の電位差Vを求めよ。
(3)このコンデンサーの電気容量を求めよ。

という問題が解けません。
特に、同心球殻状の導体から作られるコンデンサーの考え方がわかりません。
どなたか解いていただけませんか。
よろしくお願いします。

Aベストアンサー

基本的な考え方だけ説明します。
「球面上に一様に分布した電荷qは、球内に電場を作らず、球外では
動径方向を向く電場E(r)=q/(4πεr^2)をつくる」(ε:真空の誘電率)

内球に電荷q1が分布するとき、
0<r<aでE1(r)=0,a<rでE1(r)=(1/4πε)(q1/r^2)
外球に電荷q2が分布するとき、
0<r<bでE2(r)=0、b<rでE2(r)=(1/4πε)(q2/r^2)
実際の電場は、E(r)=E1(r)+E2(r)

電荷は、内球の外面にq1,外球の内面に-q1,外球の外面にq2分布する。

電位は、
φb=∫[0→∞] E(r)dr=(1/4πε)(q1+q2)/b
φa=φb+∫[a→b] E(r)dr=φb+(q1/4πε)(1/a-1/b)

q1=-Q,q2=+Qより、電位差は、
V=φa-φb=(Q/4πε)(1/a-1/b)だから、
C=Q/V=(Q/4πε)/(1/a-1/b)

QRC並列回路過渡現象について

お世話になります。
RC並列回路のパターンの過渡現象の解き方を教えて下さい。

Aベストアンサー

もうひとつ別の方法。

EとR1を電流源で置き換えると
電流値=E/R1 と抵抗R1を並列に接続した
ものになります。

するとR1とR2が並列に繋がるので

これはコンデンサCに抵抗R=R1R2/(R1+R2)を
並列接続して、それに 電流値=E/R1 の
電流源を並列に繋げたのと同じです。

これをさらに、電流源を電圧源に置き換えると、
電圧値=E・R2/(R1+R2)に抵抗R=R1R2/(R1+R2)と
コンデンサCを直列接続したのと同じです。

とすると、コンデンサの電圧はvgから、上でもとめた
電源電圧へ、時定数RCで変化するので
正解は②

Qエクセルで片対数グラフを作る

エクセルで片対数グラフを作る方法を詳しく教えてください。お願いします。

Aベストアンサー

グラフの数値軸のところで右クリックして
軸の書式設定(O)→目盛(タブ名)

対数目盛を表示する(L)
にチェックを入れてください。

Q円筒の電荷密度

半径5cmおよび10cmをそれぞれ内径・外径とする同心円筒があり、円筒間の電位差は100Vです。
そのときのそれぞれの導体表面の電荷密度の求め方がわかりません。
まず最初に何をすればいいのかということもまったくわからないのでヒントだけでもよろしくお願いします。

Aベストアンサー

図がないとわかりにくいので説明対応できるか不明ですが。

円筒の長さLの部分を考えます。
∫EdS=Q/ε から円筒の長さ方向には対称ですから
dS=Lds, Q=Lq。 dsは円筒の周長に沿う微少長さで、qは単位長あたりの電荷密度(C/m)になります。

すると、円周方向の対称性からEは円筒面上の何処でも一定ですから2πrE=q/ε.
内径をr1、外径をr2としてEを半径方向に積分すれば電位差Vが求まります。
V=∫(r1~r2)(Edr) これからVはr1,r2,q,εからなる式になります。

そうすれば、未知数はqだけなので求まります。
導体表面の電荷密度σは
σ=q/(2πr)[C/m2]
となります。すなわち内径と外径では電荷密度は異なります。

なお、特に指示がなければεは真空中の誘電率でよいはずです。

Q抵抗のカラーコードの許容差について教えて頂きたいのですが、宜しくお願い致します。

抵抗のカラーコードの「誤差率」を何故「許容差」と表記しているのでしょうか?

それと抵抗値が違う10種類以上の抵抗のカラーコードを読み取り、読み取った抵抗値とその許容差を比較しました。すると、読み取った抵抗値が大きければ大きいほど許容差(誤差率)が小さく、逆に抵抗値(誤差率)が小さいと許容差が大きいのです。

これは何を意味しているのでしょうか?
それぞれの抵抗の用途に関係しているのでしょうか?

教えて頂きたいのですが宜しくお願い致します。

Aベストアンサー

全くの素人ですが・・・

> 「誤差率」を何故「許容差」と表記

「そういう慣習」なのかもしれませんが、例えば許容差±5%の抵抗は「±5%までの誤差が許容される回路でお使い下さい」という意味なのかもしれません。
(全くの推測ですが)

さて、

> 抵抗値が大きければ大きいほど許容差(誤差率)が小さく

とのことですが、定格電力に違いがあれば(1/4Wと1/8Wなど)、upponさんの仰る通り、用途の違いという可能性はあると思います。
ただ、それとは別の可能性として、製造のしやすさ、もあるのかもしれません。

例えばカーボン抵抗で、工程上の炭素皮膜の厚さが仮に10
~50マイクロメートル、誤差が1マイクロメートルだったとします。
(炭素皮膜の厚さのみで抵抗値を制御するものとして:実際には螺旋状に溝を切ってあるようなので、それによって通電距離も変えているのかもしれませんが)

抵抗値は、炭素皮膜の厚さが厚いほど小さくなるので、
  1)膜厚最大(50マイクロ) → 抵抗値最大
  2)膜厚最小(10マイクロ) → 抵抗値最小
となります。
このとき、この双方の抵抗に、工程での「1マイクロ」の誤差がのったことを考えると、
  1)抵抗値最大での膜厚誤差率 : 1/50=2%
  2)抵抗値最小での膜厚誤差率 : 1/10=10%
となり、
  抵抗値が大きいほど膜厚の誤差、ひいては抵抗値の誤差が小さく、
  抵抗値が小さいほど膜厚・抵抗値の誤差が小さくなる、
と予想できます。


このようなことから、求める精度が比較的低くてよいときに多用されるカーボン抵抗などでは、「抵抗大→誤差小」「抵抗小→誤差大」という傾向になっている可能性が考えられます。
(高精度が必要なものの場合は、抵抗値が小さいものに対してもコストを掛けて、精度を出しているのではないかと思いますが)

※なお、工程上の誤差は、主に機械側に起因するので(→同一工程内で製造した場合)、こちらの誤差は「膜厚に対する率」ではなく、「誤差の絶対値(上の例では厚みのマイクロメートル)」で効くことになります。

全くの素人ですが・・・

> 「誤差率」を何故「許容差」と表記

「そういう慣習」なのかもしれませんが、例えば許容差±5%の抵抗は「±5%までの誤差が許容される回路でお使い下さい」という意味なのかもしれません。
(全くの推測ですが)

さて、

> 抵抗値が大きければ大きいほど許容差(誤差率)が小さく

とのことですが、定格電力に違いがあれば(1/4Wと1/8Wなど)、upponさんの仰る通り、用途の違いという可能性はあると思います。
ただ、それとは別の可能性として、製造のしやすさ、もあるのかもし...続きを読む

Qベクトル解析の面積分

ベクトル解析学の面積分でわからないところがあります。
面積分習いたてであまりわからないのですが、
S:円柱面 y^2+z^2=4
0≦x≦1
z≧0
のとき、次の面積分を求めよ。
∫_[S](xi+yj+zk)・dS

この問題なのですが、
z^2=4-y^2≧0
y^2≧4
-2≦y≦2
くらいまで少し考えてみたのですが、すぐに行き詰まってしまいました。
この後はどうすればいいのでしょうか。
今まではこの後に
z=f(x,y)
とかになり、fxやfyを出せたのですぐにできたのですが、zがxで表現できないので…
よろしくお願いします。

Aベストアンサー

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r * cosθ, r * sinθ)・(0, cosθ, sinθ) * |dS|
= (r * (cosθ)^2 + r * (sinθ)^2) * r * dθ * dx
= r^2 * dθ * dx.

これを 0≦θ≦π,0≦x≦1 の範囲で積分すると,円柱側面での面積分は,
I1 = r^2 * π * 1 = πr^2.


■円柱の底面 (x=1)

・外向きの単位法線ベクトル:n=(1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(1, 0, 0) * |dS|
= x * |dS|
= |dS|.

これを円柱の底面にわたって積分すると,底面積そのものなので,
I2 = πr^2 / 2.


■円柱の底面 (x=0)

・外向きの単位法線ベクトル:n=(-1,0,0).

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, y, z)・(-1, 0, 0) * |dS|
= -x * |dS|
= 0.

∴ I3 = 0.


■カマボコの底面 (z=0)

・外向きの単位法線ベクトル:n=(0,0,-1).

∴ (x, y, z)・dS
= (x, y, z)・(0, 0, -1) * |dS|
= -z * |dS|
= 0.

∴ I4 = 0.

したがって全体の面積分は I1+I2+I3+I4 = (3/2)πr^2 = 6π.

答え合ってますか?

問題の図形は半円柱 (カマボコ型) ですが,
積分する範囲は円柱の側面 (曲面部分) だけでいいのでしょうか,
それともカマボコ型の表面全体でしょうか?
一応各部分に分けて計算します.

円柱座標を使って y = r * cosθ,z = r * sinθ とします.

■半円柱の側面 (曲面部分)

・外向きの法線ベクトル:(0, y,z)=(0, r * cosθ, r * sinθ).
これを正規化すると単位法線ベクトルnは (0, cosθ,sinθ).

・微小面積 |dS| = r * dθ * dx.

∴ (x, y, z)・dS
= (x, y, z)・n * |dS|
= (x, r...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q導体で同心の外球、内球があり内球が接地されています。

http://oshiete1.goo.ne.jp/qa3031710.html

ここの問題の条件で、内外球の静電容量を求めよという問題があります。今やっている問題とほぼ一致した条件なので引用させてもらいました。

僕自身、接地するということがいまいちどういうことなのか理解できていない感じなのですが、
引用した質問の電界の答えから、内外球の電位差を求めてC=Q/Vという定義から静電容量を求めたところ、答えと一致しました。

そこで疑問がわいたのですが、C=Q/Vの定義が使えるのは外球と内球にそれぞれ-Q、+Qの電荷を与えているときと教科書に書いてありました。

この問題だと、外球にQの電荷を与えているだけで、内球には-Q'の電荷が誘起されています。
なぜC=Q/Vの定義から答えが算出できたのでしょうか?

電磁気学の理解に乏しいので詳しく教えていただきたいです。

Aベストアンサー

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在することになります.

上の孤立球の問題も,無限遠から孤立球に電荷 Q を移したと考えればよろしい.
そうすると,孤立球に +Q の電荷があるわけで,無限遠との電位差 Q/4πε_0 a から
Q = CV にしたがって C = 4πε_0 a と容量が求まります.

さて,今の問題で内球を接地したというのは内球と無限遠を導線でつないだ,
つまり内球と無限遠との電位差を同じにしたことを意味します.
で,上の解釈に従えば,内球と無限遠から外球(正確には外球殻)へ電荷 Q を移すことになります.
外球殻には内側表面に電荷に +Q' ,外側表面に +Q'' が分布します.
記号は引用された
http://oshiete1.goo.ne.jp/qa3031710.html
に従っています.
内球には -Q',無限遠には -Q'' があることになりますが,
Q' と Q'' の割合は2つの電位差,すなわち外球殻と内球の電位差,および外球殻と無限遠の電位差が
等しくなるように決まります.
内球と無限遠は導線で結ばれていますから電位は同じでないといけないのです.
もし,内球からのみ電荷を外球殻に移しても,
内球と無限遠は導線で結ばれていますから電荷は自由に行き来できるので,
上の条件に従うように勝手に電荷が移動します.
引用された inara さんのご回答はこうやって Q' と Q'' を決めています.

図で表すなら

          │
      ┌───┴───┐
      │       │
      │       │
外球殻内側─┴─     ─┴─外球殻外側
                    
   内球─┬─     ─┬─無限遠
      │       │
      │       │
      └───┬───┘
          │

と思えばよいでしょう.
実際,求めた容量は2つのコンデンサーの容量を合成したものになっていますので,
それもご確認下さい.

「与えた」に余りこだわりすぎると
「孤立した半径 a の導体球の容量を求めよ」というような問題
(たいていのテキストに出ている)の解釈がうまく行かなくなります.

わかりやすい平行平板コンデンサーでいいますと,
「2つの極板にそれぞれ +Q,-Q の電荷を与えた」というのは,
もともと電荷がなかった状態を出発点にして電荷を Q だけ一方の極板からもう一方の極板に
移したと考えればよいでしょう.
そうすれば,一方の極板には +Q の電荷が,もう一方の極板には -Q の電荷が,
それぞれ存在するこ...続きを読む

Q導体球殻の電位

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方法に自信がありません。

(3)の時、

V=-∫(∞→r)E・dr = (q/4πε_0)・(1/r)

(2)の時、
V=-∫(∞→b)E・dr -∫(b→r)0・dr = (q/4πε_0)・(1/b)

(1)の時、

V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

(1)の答えが解答では(q/4πε_0)(1/r)
ではなく
(q/4πε_0)((1/b)+(1/r)-(1/a))
となっていました。

なぜなのでしょうか。

ご教授お願い申し上げます。

内半径a 外半径b の導体球殻の中心に電気量q(>0)の点電荷を置くとき
各点における電位の分布を求めよ。無限遠方をV=0とする。

という問題で

まず、ガウスの法則を用いて電場をもとめて、そこから距離の積分をしてVを求めようとしました。


まず、境界は次の三つであっていますでしょうか。

(1)0<r<aの時(2)a≦r<b(3)B≦r

そして各場合の電場は

(1)の時、∫ε_0EdS=q より
E= q/4πr^2ε_0
(2)の時、
導体の内部なので電場E=0
(3)の時∫ε_0Eds=q
E=q/4πr^2ε_0

ここで電位を求める場合の方法ですが境界の値と計算方...続きを読む

Aベストアンサー

考え方も計算も、ほぼオッケーですよ。
(1)のときの電位ですが
V= -∫(∞→b)E・dr -∫(b→a)E・dr - ∫(a→r)E・dr = (q/4πε_0)(1/r)

真ん中の(b→a)の積分のときは、上で書かれているように E=0 なので
積分も0です。
ですから
V=(q/4πε0)( (1/b) - (1/∞) + (1/r) - (1/a) )
になりますね。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング