No.1ベストアンサー
- 回答日時:
原点Oの平面上で点Pが極座標(r,θ)によって表されるとき、OPの長さ r を
動径といいます。
7θ=θ(0<θ<π/2)を満足するθが答えですから
2π+θ=7θよりθ=π/3になります。
No.2
- 回答日時:
「ある決まった中心Oの周囲をくるくる回る点Pを考えるとき、ベクトルOPを動径といいます」と言うべきかな。
つまり、動径は「OPの長さ」ではないことに注意。「Θの動径」という言い方は不正確だと思うが、ま、「動径」と言うからには「点Pの位置を回転「中心Oを原点とする極座標(r,Θ)で表して、rは一定にしたままくるくる回す」ということだろうから、問題は
sinΘ=sin(7Θ)
cosΘ=cos(7Θ)
0<Θ<π/2
を全て満たすΘを求めているのだろうと推察されます。
さて、nが整数のとき
sinΘ=sin(Θ+2nπ)
cosΘ=cos(Θ+2nπ)
であって、また、これら二つの関係式を同時に満たすnは整数以外にはない。このことを使うと、ごく簡単な方程式ができる。それをΘについて解けばいいわけだが、その解には整数nが含まれている。そして、もうひとつの条件
0<Θ<π/2
でnの範囲が決まる。
という問題です。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 半径6の円Kを底面とする半球がある。半球の底面に平行な平面が半球と交わっており、交わりの円Lの半径は 6 2022/06/24 06:34
- 数学 三角関数の方程式について sinθ=-ルート2/1 の方程式 をとく問題があるんですけど、写真のよう 1 2023/06/18 09:54
- 数学 微分積分の円錐の体積についての問題がわからないです。 2 2022/07/16 16:26
- 統計学 統計学の問題 2 2022/07/24 19:57
- 数学 数学の問題の解き方を教えてください! 3 2022/11/02 17:32
- 数学 球の中心が正三角形の3辺をたどって1周したとき、球が通過してできた立体の体積を求めなさい。 1 2022/06/23 20:35
- 物理学 力学の微分の質問です。 答えを教えてください。至急です。 問題1ある軸の上を並進運動している物体の位 2 2023/01/31 15:10
- 工学 照明工学の問題です。 円形テーブルの中心直上6mの点Pよりテーブルの外周部を見込む立体角の大きさは3 1 2023/02/16 23:14
- 数学 数学の問題です。解き方が分かりません。教えてください。 関数y=12/xの変域が2≦x≦4のときのy 4 2022/07/23 15:08
- 工学 直径が1.0mm のニクロム線の抵抗値を20にするのに必要な長さを求めよ。 だだし、ニクロム線の 抵 3 2022/08/10 22:43
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
重積分について
-
y=cosx(0≦x≦π/2)のy軸周りの回...
-
複素数のn乗根が解けません
-
半角の公式を使った問題について
-
数学の問題です。 写真の積分を...
-
なぜ3/4πがでてくるのか 分かり...
-
重積分の変数変換後の積分範囲...
-
∫logsinxdx(0~π/2)の広義積分...
-
この1/2はどこからでてきました...
-
積分
-
回答者どもがなかなか答えられ...
-
ん?複素数zがargz=π/2を満たし...
-
位相がよく分かりません。 cos(...
-
1/(sinx+cosx)の積分
-
xsinx-cosx=0 の解と極限
-
楕円の回転体の体積を求める問...
-
2番の問題について質問です 解...
-
重積分の問題です。 dxdy/√(x^2...
-
三角関数
-
数cです 途中式もお願いします
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1 / (x^2+1)^(3/2)の積分について
-
cosπ/2やcos0ってどのように求...
-
位相がよく分かりません。 cos(...
-
重積分について
-
絶対値付き三角関数の積分、ラ...
-
数3の極限について教えてくださ...
-
y=sin4θとy=cos4θのグラフの...
-
1/(sinx+cosx)の積分
-
五芒星の角(?)の座標
-
複素数のn乗根が解けません
-
この1/2はどこからでてきました...
-
cos π/8 の求め方
-
∫[0→∞] 1/(x^3+1)dx
-
数学の問題です。 写真の積分を...
-
積分∫[0→1]√(1-x^2)dx=π/4
-
数学IIIの積分の問題がわかりま...
-
数学Ⅱ 三角関数のグラフ y=-2co...
-
f(X)=[cosX]がなぜ不連続になる...
-
xsinx-cosx=0 の解と極限
-
重積分の問題を教えてください。
おすすめ情報