プロが教えるわが家の防犯対策術!

次の問題を教えて下さい。基本的ですいません。
よろしくお願いします。

----------------------------------
以下の集合が凸集合であることを示せ
A={ x^2+y^2≦r^2 }∈R^2 (rは定数)
B={ x^2+y^2≦z } ∈R^3
----------------------------------

A 回答 (3件)

(1)


0≦r∈R
A={(x,y)∈R^2|x^2+y^2≦r^2}
{(a,b),(c,d)}⊂A
0≦t≦1
(x,y)=(1-t)(a,b)+t(c,d)
とすると
a^2+b^2≦r^2
c^2+d^2≦r^2
(a^2+b^2)(c^2+d^2)-(ac+bd)^2=(ad-bc)^2≧0

x^2+y^2
={(1-t)a+tc}^2+{(1-t)b+td}^2
=(1-t)^2(a^2+b^2)+2(1-t)t(ac+bd)+t^2(c^2+d^2)
≦(1-t)^2(a^2+b^2)+2(1-t)t√{(a^2+b^2)(c^2+d^2)}+t^2(c^2+d^2)
={(1-t)√(a^2+b^2)+t√(c^2+d^2)}^2
≦r^2

(2)
B={(x,y,z)∈R^3|x^2+y^2≦z}
(a,b,c)∈R^3
(d,e,f)∈R^3
0≦t≦1
(x,y,z)=(1-t)(a,b,c)+t(d,e,f)
とすると
a^2+b^2≦c
d^2+e^2≦f
(a^2+b^2)(d^2+e^2)-(ad+be)^2=(ae-bd)^2≧0

x^2+y^2
={(1-t)a+td}^2+{(1-t)b+te}^2
=(1-t)^2(a^2+b^2)+2(1-t)t(ad+be)+t^2(d^2+e^2)
≦(1-t)^2(a^2+b^2)+2(1-t)t√{(a^2+b^2)(d^2+e^2)}+t^2(d^2+e^2)
≦c(1-t)^2+2(1-t)t√(cf)+ft^2
=(1-t)c+tf-t(1-t)(√c-√f)^2
≦(1-t)c+tf
=z
    • good
    • 3
この回答へのお礼

お礼が遅れて申し訳ありません。
丁寧な回答をありがとうございました。
お陰様で理解することができました。

お礼日時:2012/05/16 03:30

凸集合の定義通り、集合Aの任意の2点(a,b), (c,d)について、両者を結ぶ線分上の点(a+ct, b+dt)(0≦t≦1) が全てAの要素であること


  ∀a∀b∀c∀d∀t((a,b)∈A ∧ (d,c)∈A ∧ 0≦t≦1 ⇒ (a+ct, b+dt)∈A)
を証明すれば良いのです。それをキッチリやって下さってるのがANo.2。
    • good
    • 0
この回答へのお礼

お礼が遅れてしまって申し訳ありません。
解決しました。

お礼日時:2012/05/16 03:29

何が分からないのかが分かりません.

この回答への補足

凸集合の定義は知っていますが、問の集合について
どのように示せばいいかわからないのです。
証明を実際にして頂けると幸いです。

補足日時:2012/05/08 17:04
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q凸集合の定義ってなんですか?

2題よろしくお願いします。
1.平面上の集合kが凸集合である定義を述べよ。
2.xy平面上の凸集合、凸でない集合をそれぞれ例示せよ。
この2題です。さっぱり分かりません。よろしくお願いします。

Aベストアンサー

つまりy=xのような直線は凸集合
n角形で一つの辺が内側にはいりこんでいれば凸集合ではない。
ん?まてよ…
さらに盛った目玉焼きを上からだけみると凸集合だ。(へこみがない場合です)
しかし、横からみると凸集合ではない。
つまり、目玉焼きは3次元的にみると凸集合ではない。
どうも線形計画法の問題みたいですね。

Q行列の正定・半正定・負定

行列の正定・半正定・負定について自分なりに調べてみたのですが、
イマイチ良くわかりません。。。
どなたか上手く説明していただけないでしょうか?
過去の質問の回答に

>cを列ベクトル、Aを行列とする。
>(cの転置)Ac>0
>となればAは正定値といいます。
>Aの固有値が全て正であることとも同値です。

とあったのですが、このcの列ベクトルというのは
任意なのでしょうか?
また、半正定は固有値に+と-が交じっていて、
負定は固有値が-のみなのですか?

どなたかお願いしますorz

Aベストアンサー

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列ではないAの固有値がすべて正だからといって、
(cの転置)Ac>0とは限りません。
例えば、
A =
[ 1 4 ]
[ 0 1 ]
とすると、Aは対称行列ではなく、固有値は1です。
しかし、
(cの転置) = [ 1, -2]
とすると、
(cの転置)Ac = -3 < 0
となってしまいます。(実際に計算して確かめてください。)
なので、行列Aが対称行列であるという条件はとても重要です。

また、半正定値の定義は、上の定義で
『ゼロベクトルではない任意の』 --> 『任意の』
と書き直したものです。
このとき、半正定値行列の固有値はすべて0以上です。(つまり0も許します。)
逆に、対称行列の固有値がすべて0以上なら、その行列は半正定値です。

さらに、負定値の定義は、『ゼロではない任意の』ベクトルcに対して
(cの転置)Ac<0
となることです。
固有値についてはもうわかりますね。

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列...続きを読む

Q凸集合での命題を証明したいのですが…

実数体Rに於いて,A,B⊂R^n を凸集合とする時、
(1) もし、AとBが閉集合ならA+B:={x+y;x∈A,y∈B}は閉集合とは限らない。
(2) もし、AがコンパクトでBが閉集合ならA+Bは閉集合。

という命題を証明したいのですが滞ってます。

凸集合の定義は
「集合Sについて任意の2つのベクトル x,y∈S と正の実数s (0≦s≦1) について,
sx+(1-s)y∈S
が成立するとき,Sは凸集合であるという」
閉集合の定義は
「{Π[1..n][ai,bi];ai,bi∈R(i=1,2,…,n)}の元を閉集合という」
コンパクトの定義は
「集合YをX(⊂R^n)の開被覆とする時、Yの有限個の開集合でXを覆える。」

(1)の反例はどのようなものが挙げれるでしょうか?
そして、(2)はどのようにして示せますでしょうか?

Aベストアンサー

すみません,Aの定義に
-π/2 ≦ x ≦ π/2
を入れ忘れました.つまり,

A= {(x,y)∈R^2 |-π/2 ≦ x ≦ π/2, y ≧ |tan(x)|}

放物線みたいなのが一つあるだけです.

Qなぜ、双対問題(双対性)を考えるのですか?

現在、線形計画法を勉強中で、よくわからないことがあります。


例えばこのような問題があるとしまして、

主問題
max Z = 6X1 + 4X2(例えば収益を最大にしたい…)
s.t. 2X1 + X2 =< 70
   3X1 + 4X2 =< 180
   X1,X2 => 0

双対問題
min W = 70Y1 + 180Y2(例えば費用を最小にしたい…)
s.t. 2Y1 + 3Y2 => 6
   Y1 + 4Y2 => 4
   Y1,Y2 => 0

主問題の最適な目的関数値 Z と、
双対問題の最適な目的関数値 W は、必ず一致することは、
シンプレックス法で実際に解いて確認できます。できました。
(参考書として読んでいる本の、標準形での証明・説明はいまいちわかりませんでした…。)

ですが、

なんらかの収益を最大にしたい…という問題を定式化して解けば、
その収益を最大にしたいときの最適解・最適値を求められるなら
主問題の方だけ充分ではないのでしょうか?

上記の式の例ですと式の規模(?)に大した違いはないですが、
問題によって、双対問題に作り直した方が計算しやすい?
といったようなメリットがあるのですか?


なぜ、双対問題を考えるのか、どなたか分かりやすく教えて頂けませんでしょうか。

現在、線形計画法を勉強中で、よくわからないことがあります。


例えばこのような問題があるとしまして、

主問題
max Z = 6X1 + 4X2(例えば収益を最大にしたい…)
s.t. 2X1 + X2 =< 70
   3X1 + 4X2 =< 180
   X1,X2 => 0

双対問題
min W = 70Y1 + 180Y2(例えば費用を最小にしたい…)
s.t. 2Y1 + 3Y2 => 6
   Y1 + 4Y2 => 4
   Y1,Y2 => 0

主問題の最適な目的関数値 Z と、
双対問題の最適な目的関数値 W は、必ず一致することは、
シンプレックス法で実際に解いて確認...続きを読む

Aベストアンサー

私も線形計画法で双対性を教わったとき、「だから何なんだ」でした。しかしラグランジュ乗数法でわかって、線形計画法はその特殊な場合として納得できました。つまり少なくとも私の場合、ラグランジュ乗数法を経由しなければ双対性にどんな意味があるか、わかりませんでした。

f(x) を目的関数、g(x) = 0 を制約条件とすると、最適化問題 min_x {f(x) | g(x)=0} の解は、ラグランジュ関数 L(x,m) := f(x) + m g(x) の鞍点 dL/dx = dL/dm = 0 です。x が主変数、m が双対変数とかラグランジュ乗数と呼ばれるものです。

このとき L を見てわかるのは、最適点においては g を目的関数と思って f を制約条件と思っても x は同じだ、ということです。つまり目的関数と制約条件との役割を入れ替えても解は同じです。

これを制約条件がたくさんある場合に一般化して言うと、最適点において目的関数は制約条件の 1 つと思ってかまわない、ということです。私はこの互換性が双対性の意味だと思ってます。

じゃあ、双対問題を考えると、どんな良いことがあるか?

No.1 で指摘されたように、ラグランジュ乗数、すなわち shadow price の経済的な意味がはっきりします。

主変数がたくさんあって制約条件が少なければ、双対問題の方が変数が少なくできます。すると、主問題より楽に解ける可能性が高いです。

L の鞍点を求めるのに、x に関する最小化と m に関する最大化を交互に行う解法が取れます。(主双対解法と言うのだと思います。)そうすると計算の途中でも「目的関数の最適値における値は、この値とあの値の間 (duality gap) にある」ということが言えます。つまり、とりあえず得られている解が最適解からどれくらい離れているかの評価ができます。

とは言え、最大の利点は先に述べた、目的関数と制約条件とを分けて考える必要がなくなるという、概念の単純化だと思います。「効用の最大化は費用の最小化」だけでも感動的ではないですか?

私も線形計画法で双対性を教わったとき、「だから何なんだ」でした。しかしラグランジュ乗数法でわかって、線形計画法はその特殊な場合として納得できました。つまり少なくとも私の場合、ラグランジュ乗数法を経由しなければ双対性にどんな意味があるか、わかりませんでした。

f(x) を目的関数、g(x) = 0 を制約条件とすると、最適化問題 min_x {f(x) | g(x)=0} の解は、ラグランジュ関数 L(x,m) := f(x) + m g(x) の鞍点 dL/dx = dL/dm = 0 です。x が主変数、m が双対変数とかラグランジュ乗数と呼ばれるもの...続きを読む

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Q「ノルム、絶対値、長さ」の違いについて

あじぽんと申します。よろしくお願いします。

ベクトルや複素数などに出てくる「ノルムと絶対値と長さ」というのは同じことを違う言葉で表現しているのでしょうか?
手元にある書籍などには全てが同じ式で求められています。
同じ式で表現されていても意味は少しづつ違っていたりするのでしょうか?

よろしくお願いします。

Aベストアンサー

どれも同じような性質を持ちますが、違いの1つとして定義される空間が違います。

「絶対値」は、実数や複素数といった「数」に対して定義されます。
定義は、一通りしかありません。
ベクトルに対して、絶対値を求めるという言い方をする場合もあるかもしれませんが、それはベクトルの長さを表す記号に絶対値の記号を利用する場合があるからであり、参考書にも文章として「ベクトルの絶対値」という言い方はあまりされていないのではないでしょうか?



「長さ」というのは、空間にある「線」に対して定義できます。
数に対しては「長さ」という言い方はあまり聞かないと思います。
例えば、「3」の長さというような言い方は耳になじまないと思います。
一方、ベクトルの場合は、「矢印」という「線」になりますので「長さ」が定義できます。



最後の「ノルム」は、線形空間に対して定義できます。(もちろん実数、複素数やベクトルも線形空間です)
ノルムの条件を満たせばノルムになるため、複数のノルムが考えられます。
そのため、「(1,1)というベクトルに対するノルムは?」
という質問に対しては、「どのノルムを使うか?」という条件が欠けているため厳密に言うと「解答はできません」。
例としてよく扱われるノルムは「ユークリッドノルム」と言われ、通常のベクトルの長さと等しくなります。

ベクトルに対するノルムでは、「最大値ノルム」というのが他の例としてよく使われます。
これは、ベクトルの各要素の最大値で定義されます。
(例:(3,1,5)というベクトルの最大値ノルムは、3つの数字の最大値である5になります)

ノルムというと、線形空間であれば定義できるため、
f(x) = 3x^2+5x
という数式に対するノルムというのも考えられます。
(数式は、定数倍したり、足し算したりできますよね)
数式に対して「絶対値」とか「長さ」と言ってもピンと来ないですよね。

しかし、まだやられていないかもしれませんが、数式に対するノルムというのは存在します。


そうすると、なんでこんなんがあるねん。って話になると思います。

ここで、ベクトルに対してある定理があったとします。

それがさっきのような数式など他の線形空間でも成り立つんだろうか?
というのを考えるときに「ノルム」の登場です。

その定理の証明で、「ベクトル」として性質を使わずに「ノルム」の性質だけを使って証明ができれば、
それは「ベクトル」に対する証明でなくて「ノルムを持つもの」に対する証明になります。
(ちょっと難しいかな?)


このようにして、定理の応用範囲を広げるために「長さ」や「絶対値」の考え方をベクトルだけでなく「線形空間」という広い考え方に適用できるようにしたのが「ノルム」になります。

どれも同じような性質を持ちますが、違いの1つとして定義される空間が違います。

「絶対値」は、実数や複素数といった「数」に対して定義されます。
定義は、一通りしかありません。
ベクトルに対して、絶対値を求めるという言い方をする場合もあるかもしれませんが、それはベクトルの長さを表す記号に絶対値の記号を利用する場合があるからであり、参考書にも文章として「ベクトルの絶対値」という言い方はあまりされていないのではないでしょうか?



「長さ」というのは、空間にある「線」に対して...続きを読む

Q微分方程式の平衡点の安定性

微分方程式の平衡点の安定性とはどうやったら判別できるのでしょうか?
例えば、dx/dt=x(1-x)(1/2-x)という微分方程式については
どうやって解けばいいですか?
下のようなサイトを調べましたが、どうもよく分りません。
http://www4.pf-x.net/~arataka/ode/node7.html

Aベストアンサー

適当に座標をずらしてx=0が平衡点になるようにしてあるとします。リアプノフ関数を
 V(t)=(x(t))^2
で定義します。もしx=0の適当な近傍の中で、すべてのtについてdV/dt<0 であるならば、この近傍内の解はx=0に収束し、x=0が安定平衡点は明らかです(安定でないのはすべてのtについてdV/dt>0 である必要はない)。dx/dt=x(1-x)(1/2-x)のx=0の平衡点を調べてみると、この点の近傍で
 dV/dt=2x・(dx/dt)>0
初期値が0より少し大きければ、dx/dt>0なのでオイラー法の次のステップではx=0からさらに大きくなっててしまう。0より少し小さければ、dx/dt<0なのでオイラー法の次のステップではx=0からさらに小さくなっててしまう。つまり安定ではありません。x=1/2を原点に持ってくるように平行移動して、x'=x-1/2と書き直し、x'の微分方程式に書き直して上記を適用すると、dV/dt<0すなわちx'=0は安定平衡点であることが示されるはずです。

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む

Q院試の志望理由書に苦戦しています

院試で志望理由書を1000字で書かなければならないのですが、意外と苦戦しています。どのような構成で書けばいいのかがよくわからなくて、一応広めに、どのようにその研究分野に興味を持ったか⇒なぜその研究室なのか⇒どのような研究をしたいのか⇒将来はなにをしたいのかという構成で書いていますが、どのような研究がしたいかという部分で学部の研究と異なる研究なので悩んでます。知ったかぶりに書いても見破られるでしょうし。
経験者の方はどのような構成で書かれましたか?特にどのような研究がしたいかという部分はどのくらい詳しく書きましたか?教えてください

Aベストアンサー

修士かな?(博士過程だと話は違うので)

志望理由は大学院側が志望理由を知るために書かせている文章ではありません。
論旨のとおった文章が書けるかどうかと、熱意があるかどうかなどを見るためものです。

研究計画を書いてもいいですが、大学院の側は受験生が勝手に言っている研究計画を尊重する気は全くありません。入学したらたいていは全然違う研究テーマになります。
つまり、研究計画は「良い(研究成果が出そうな)研究テーマであるか?」ではなく「論理の筋が通った文章であるか?大学院に入学してやっていけそうな基礎知識や知性が見える文章であるか?」が問題です。研究予算申請のための研究計画じゃないんですから。

採点する立場で言うと、たいていの研究計画は的外れで、「こういう変な/分野がずれている研究計画の固執する学生だと、合格させたくないなぁ。大学院側の提示する研究テーマに素直に乗り換えてくれる学生だろうかなぁ?」とか思って、読んでます。

QΣと∫って入れ替えできるんですか!?

Σと∫を入れ替えられる条件とはなんでしょうか?
例えば
∫Σt^n/n!dt
という式があって
Σ∫t^n/n! dt
のようにΣと∫が入れ替えて使っているのを見たことがあります。

さらに、同じようにlimと∫が入れ替えて使える時と言うのはどういうときなんでしょうか?
lim∫1/t dt 
=∫lim1/t dt
みたいな感じです。

お願いします!教えてください!!

Aベストアンサー

#1です。
A#1の補足について
普通の有限項和のΣではもちろんできることは積分の定義から明らかですのでA#1のように回答したわけです。
漠然とした一般的な質問では一般的な回答しか得られません。

無限項和の特別なケースの場合などについての回答を得たければ
>出来ない場合もあって、交換したら答えが異なるケースがあったんで
このケースの具体的な式や例をあげて、こういう場合は交換できませんか?
この交換での式変形はあっていますか?
特に積分の範囲やΣの和の範囲を明記して、有限範囲なのか、無限範囲なのかも明記する
などして質問を投げないと希望するような回答は得られませんよ。
特に、特異なケースも含めた一般論の回答は特に難しいですから(現在も解決していない特異なケースも含まれる可能性もあるので)。

また、どの程度(高校レベル、大学レベル、それ以上の大学院や専門家レベル)での回答を求められているか、回答者には分かりませんし、
質問者に理解できないレベルの回答をしても意味がないですから。

有限と無限の間には、簡単に有限で成り立つ法則が必ずしも、無限では成り立たない(適用できない)ケースがしばしば現れますから。。。

#1です。
A#1の補足について
普通の有限項和のΣではもちろんできることは積分の定義から明らかですのでA#1のように回答したわけです。
漠然とした一般的な質問では一般的な回答しか得られません。

無限項和の特別なケースの場合などについての回答を得たければ
>出来ない場合もあって、交換したら答えが異なるケースがあったんで
このケースの具体的な式や例をあげて、こういう場合は交換できませんか?
この交換での式変形はあっていますか?
特に積分の範囲やΣの和の範囲を明記して、有限範囲なのか、...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング