A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
sin と cos の分数式を積分するとき、つまり
2変数有理関数 f(u,v) があって ∫f(sinθ,cosθ)dθ を計算するとき、
t = tan(θ/2) で置換積分すると、有理式の積分に帰着できて
解決することが知られています。これは、広範囲に有効な
強力な算法なのですが、変換した後の積分計算が煩瑣になりがちで、
扱いにくい方法でもあります。
f(u,v) にある種の特徴があると、これより手軽な算法が使える
ことも、併せて知っておくほうが便利です。
今回は、その例。
f(u,v) が、u や v のどちらに関して偶関数だったり奇関数だったり
するときには、その特徴が使えます。
質問の被積分関数は、sin x についても cos x についても偶なので、
(sin x)^2 + (cos x)^2 = 1 を使って sin を消すと、
簡単な式に (cos x)^2 を代入したものになります。そこで、
1 + (tan x)^2 = 1/(cos x)^2 と
(d/dt)(tan x) = 1/(cos x)^2 を思い出せば、
t = tan x という置換が有効であることに気づくでしょう。
f(u,v) が u または v について奇関数である場合には、
例えば u について奇であれば、∫f(sinθ,cosθ)dθ を
t = cosθ で置換することが有効です。
No.1
- 回答日時:
>∫1/(sin^2x+3cos^2x)dx
=∫{1/cos^2x)/{(sin^2x/cos^2x)+3}dx
=∫{sec^2x/(tan^2x+3)}dx
tanx=tとおくと、sec^2xdx=dt
=∫dt/(t^2+3)
=(1/√3)tan^-1(t/√3)+C
=(1/√3)tan^-1(tanx/√3)+C
でどうでしょうか?
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
e^2xのマクローリン展開を求め...
-
数学についての質問です △ABCで...
-
数学の質問です。 0≦θ<2πのとき...
-
自然対数eは何に使えるのですか...
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
|1+e^(-iωt)|の求め方
-
複素数の実部と虚部
-
Σは二乗されないのですか?
-
数Ⅱ 三角関数 問 0≦θ<2πのとき,...
-
フーリエ級数|cosx|
-
三角関数
-
複素関数で分からない問題があ...
-
cos(θ-π/2)=cos(π/2-θ)になるの...
-
cos^3tを微分するときはどうや...
-
数3です。 第n項が次の式で表さ...
-
三角関数・微分の問題です
-
θが0度以上180度以下のとき cos...
-
1/1+tan^2θ=cos^2θになる理由を...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^2xのマクローリン展開を求め...
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
数3です。 第n項が次の式で表さ...
-
三角関数
-
cos(2/5)πの値は?
-
数学の質問です。 0≦θ<2πのとき...
-
長方形窓の立体角投射率
-
数列の極限でわからない問題
-
高校数学 三角関数
-
双極子モーメントの別解
-
cos2x=cosx ってなにを聞かれ...
-
フーリエ級数|cosx|
-
三角関数
-
cos(arcsinx) = sqrt(1-xx)
-
三角関数で、
-
加法定理
-
cos^3tを微分するときはどうや...
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
不定積分∫dx/√(1-x^2)=arcsin(x...
おすすめ情報