複素関数で分からない問題があります。
∫[0->π]1/(1+sin^2x)dx
という積分を考えるとき、
sin^2x=(1-cos2x)/2 と変換し、
∫[0->π]2/(3-cos2x)dx
とします。この後、この関数はx=πを挟んで対称であるから、
∫[0->π]2/(3-cos2x)dx は、
∫[0->2π]/(3-cos2x)dx
とできると思ったのですが、答えのπ/√2に合いませんでした。この操作はできないのでしょうか。解答では2x=x'と置換していました。
ご教授お願い致します。
No.5ベストアンサー
- 回答日時:
答えは変わりません。
どちらでやっても π/√2 です。どっかで計算ミスしただけでしょう。
cos(2x) = (z^2 + z^-2)/2 と書くと
積分路の対応がやや見えにくいけど、要するに
z = e^(ix) で置換したってことでしょう?
この z の軌跡が閉じた円周になるように
x の範囲を 0≦x≦2π にしたかったんですよね。
S = ∫[0→π] 1/(1 + sin^2 x) dx を
S = ∫[0→2π] 1/(3 - cos 2x) dx と変形してから
z = e^(ix) で置換すると...
S = ∫[0→2π] 1/(3 - (z^2 + z^-2)/2) dx
= ∫[0→2π] 2z^2/(z^4 - 6z^2 + 1) dx
= ∫[0→2π]{ 2iz/(z^4 - 6z^2 + 1) } iz dx
= 2i ∮ 1/(z^4 - 6z + 1) dz
∮ の積分経路は、反時計廻りの単位円周です。
被積分関数の部分分数分解が
1/(z^4 - 6z + 1) =
= (1/8√2){ 1/(z+1+√2) - 1/(z-1+√2) - 1/(z+1-√2) + 1/(z-1-√2) }
になるので、閉路積分は
S = (2i/8√2){ ∮dz/(z+1+√2) - ∮dz/(z-1+√2) - ∮dz/(z+1-√2) + ∮dz/(z-1-√2) }
= (i/4√2){ 0 - 2πi - 2πi + 0 }
= π/√2.
ほら、あなたの解法でちゃんと π/√2 が出ましたよ。
No.4
- 回答日時:
> 最初に2x=x'と置いて
> ∫[0->2π]1/(3-cosx')dx'
> とした場合と答えが合いませんでした。
そりゃそうだ。
S = ∫[0->2π]1/(3-cos2x)dx で 2x=x' と置いたなら、
S = ∫[0->2π]1/(3-cosx')dx' とはならない。
2dx=dx' だから
S = ∫[0->2π]1/(3-cosx')(1/2)dx' でしょ?
合うわけないよ。
申し訳ございません。説明が足りていませんでした。
∫[0->π]1/(1+sin^2x)dx
を
sin^2x=(1-cos2x)/2 と変換し、
∫[0->π]2/(3-cos2x)dx
とした後、
2x=x'として、
∫[0->2π]1/(3-cosx')dx'
とした場合と、
x=πでの対称性から
∫[0->π]2/(3-cos2x)dx
=∫[0->2π]1/(3-cos2x)dx
とした場合で、答えが変わってしまうのは何故なのでしょうか。
No.3
- 回答日時:
os2x = (z^2+z^(-2))/2とおいて、留数定理で求めようとしました。
//アリさんには悪いが・・・。
それでぼくは結論を得ました。
少々計算がややこしいので
ケアレスミスがあると思う。
No.2
- 回答日時:
いや、
∫[0->π]2/(3-cos2x)dx = ∫[0->2π]1/(3-cos2x)dx = π/√2 なんだけど。
∫[0->2π]1/(3-cos2x)dx にした後、どう計算するつもりだった?
回答ありがとうございます。
∫[0->2π]1/(3-cos2x)dx として、
cos2x = (z^2+z^(-2))/2とおいて、留数定理で求めようとしました。
ただ、最初に2x=x'と置いて
∫[0->2π]1/(3-cosx')dx'
とした場合と答えが合いませんでした。
No.1
- 回答日時:
∫[0->π]2/(3-cos2x)dx=∫[0->2π] 1/(3-cosx') dx'
ですね。
x'=2xとおけば、上の式が得られます。
すると
∫[0->2π] 1/(3-cosx) dx
=∫[0->π] 1/(3-cosx) dx+∫[π->2π] 1/(3-cosx) dx
=∫[0->π] 1/(3-cosx) dx+∫[0->π] 1/(3+cosx) dx
で、定石通り
t=tan(x/2)
とおけば解けます。
ただ、
∫[0->π]1/(1+sin²x)dx
=∫[0->π/2]1/(1+sin²x)dx+∫[π/2->π]1/(1+sin²x)dx
右辺第2式を y=π-x と変数変換すれば
∫[π/2->π]1/(1+sin²x)dx=∫[π/2->0] 1/(1+sin²y) (-dy)
=∫[0->π/2] 1/(1+sin²y) dy
となるので
∫[0->π]1/(1+sin²x)dx=2∫[0->π/2]1/(1+sin²x)dx
となり、ここで、y=2x と変換すれば
∫[0->π]1/(1+sin²x)dx=2∫[0->π] 1/(3-cosy) dy
となって、上のように積分区間を分けずとも、積分は1つにな
る(ただ、ほぼ同じ積分なので、大した手間でないが)。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
exp(-ax^2)*cosx の証明
数学
-
e^(x^2)の積分に関して
数学
-
∫1/(x^2+1)^2 の不定積分がわかりません
数学
-
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
数学の質問です。 0≦θ<2πのとき...
-
cos2θ+cosθ+1=0
-
fn(x)の式がよくわかりません
-
数学の質問です。 円に内接する...
-
三角関数
-
数Ⅱ 三角関数 問 0≦θ<2πのとき,...
-
e^2xのマクローリン展開を求め...
-
cos(θ-π/2)=cos(π/2-θ)になるの...
-
-1/(cosθ+isinθ)=cos(-θ)+isin(...
-
cos40°の値を求めています。
-
0 ≦θ ≦πのとき cos(2θ+π/3)=cos...
-
数列について
-
数学 三角関数の応用
-
長方形窓の立体角投射率
-
四角形の対角線の角度の求め方...
-
この問題教えてください 範囲は...
-
三角関数を含む積分について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
数学の質問です。 0≦θ<2πのとき...
-
eの2πi乗は1になってしまうんで...
-
次の記述について
-
e^2xのマクローリン展開を求め...
-
cos2x=cosx ってなにを聞かれ...
-
以下の問題が示している領域が...
-
積分
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
高校数学 三角関数
-
cos60°が、なぜ2分の1になるの...
-
三角関数で、
-
∮sinθcos^2θを置換積分なしで =...
-
1/ a + bcosx (a,b>0)の 不定積...
-
cos2θ−3cosθ+ 2≧0の不等式を解...
-
0 ≦θ ≦πのとき cos(2θ+π/3)=cos...
-
Σは二乗されないのですか?
-
複素関数で分からない問題があ...
-
cos(θ-π/2)=cos(π/2-θ)になるの...
-
三角関数
おすすめ情報