A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
アステロイド曲線で囲まれた部分の面積の求め方が、
参考URLに、途中計算つきで詳しく載っていますのでご覧下さい。
参考URL:http://www.cfv21.com/math/asteroid.htm
No.1
- 回答日時:
∫0,π/2 3a^2cos^2θsin^4θdθ = ∫0,π/2 3a^2sin^2θcos^4θdθ
から「足して 2で割る」とちょっとは簡単... かなぁ?
回答有り難うございます。
再び質問で申し訳ないのですが、
∫0,π/2 3a^2cos^2θsin^4θdθ = ∫0,π/2 3a^2sin^2θcos^4θdθ
というのは、どのように変形をしたのでしょうか?
sinとcosが入れ替わっていますが、三角関数の公式でしょうか。
数学が苦手で的はずれな質問になってしまっているかもしれませんが、よろしくお願いします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 積分の計算にてこづっています。2曲線の面積を求める問題なのですが [-1/2cos2x+cosx]上 4 2022/06/25 12:55
- 数学 θ=π/2 のまわりでの f(θ)=sinθ/cosθのローラン展開に関して 以外の「」の解答を頂き 13 2022/11/11 09:45
- 物理学 物理の問題です。 1 2022/12/20 23:04
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 高校 数3 面積 4 2022/05/11 12:37
- 数学 π/2<=x^2+y^2<=π,0<=x<=yのときsin((x^2+y^2)/2)の重積分の計算過 1 2023/01/10 11:09
- 数学 複素数についての質問です。 1+iの主値を求める問題で回答が以下のようになっていました。 1+i = 5 2022/07/22 04:04
- 数学 写真の(3)の問題の解説の1行目についてですが、 ①なぜ、曲線Kの囲む図形は、cos(-θ)と表せる 5 2023/01/26 00:36
- 数学 過去にしてきた質問に対する解答に関して質問が以下の1〜7に関して解答を頂きたく思います。 時間のある 34 2022/07/09 21:52
- 数学 複素関数で分からない問題があります。 ∫[0->π]1/(1+sin^2x)dx という積分を考える 5 2022/12/24 22:14
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】看板の文字を埋めてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
cosπ/2やcos0ってどのように求...
-
π/2<=x^2+y^2<=π,0<=x<=yのとき...
-
極座標θ r φの範囲
-
1 / (x^2+1)^(3/2)の積分について
-
∫[0→∞] 1/(x^3+1)dx
-
重積分の変数変換後の積分範囲...
-
sinθ・cosθの積分に付いて
-
cos π/8 の求め方
-
逆三角関数の方程式の問題です...
-
積分法(アステロイドの面積)...
-
レムニスケート
-
複素数平面上での平行移動
-
重積分について
-
複素数平面で、複素数を極形式...
-
重積分を使って曲面積を求める...
-
極座標A(2,π/6)となる点を通り...
-
1/(sinx+cosx)の積分
-
偏微分係数の問題
-
重積分 変数変換 絶対値
-
cos(π×i/4)の値を求めてくださ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1 / (x^2+1)^(3/2)の積分について
-
cosπ/2やcos0ってどのように求...
-
位相がよく分かりません。 cos(...
-
重積分について
-
絶対値付き三角関数の積分、ラ...
-
数3の極限について教えてくださ...
-
y=sin4θとy=cos4θのグラフの...
-
1/(sinx+cosx)の積分
-
五芒星の角(?)の座標
-
複素数のn乗根が解けません
-
この1/2はどこからでてきました...
-
cos π/8 の求め方
-
∫[0→∞] 1/(x^3+1)dx
-
数学の問題です。 写真の積分を...
-
積分∫[0→1]√(1-x^2)dx=π/4
-
数学IIIの積分の問題がわかりま...
-
数学Ⅱ 三角関数のグラフ y=-2co...
-
f(X)=[cosX]がなぜ不連続になる...
-
xsinx-cosx=0 の解と極限
-
重積分の問題を教えてください。
おすすめ情報