ママのスキンケアのお悩みにおすすめアイテム

アナログ電子回路を勉強しています。

T型等価回路とπ型等価回路について、以下が分かりません。

(1)T型等価回路とπ型等価回路の違い
T型とπ型は何が違うのですか?
一瞬、π型はgmで制御できるのかと思いましたが、T型でもβib = gmvbe と変換できますよね(合ってますか?)。
容量のあるなしで低周波も高周波もT型で表せるのに、なぜπ型に変換する必要があるのでしょうか。

(2)π型等価回路はエミッタ接地回路以外にも使えますか?
コレクタ接地やベース接地にも適用できますか?
「エミッタ接地高周波ハイブリッドπ型等価回路」などと参考書に記述されており、
エミッタ接地にしか適用できないのでしょうか。


T型までは順調に理解できていたのに、突然π型が登場して意味不明になってしまいました。
分かりやすく、かつ詳しく教えていただけると助かります。
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

今晩は。



ご質問の回答として、こちらの文献(http://www.konoie.com/taro/documents/analog_sys. …)が非常に参考になると思います。17ページの「アーリーの等価回路による設計」にT型等価回路とπ型等価回路について書かれている内容がとても分かりやすいかと思います。
    • good
    • 2
この回答へのお礼

こちらの資料は非常に参考になりました。
ご回答ありがとうございました。

お礼日時:2013/11/12 22:21

参照 URL


  ↓

  

参考URL:http://www.cqpub.co.jp/toragi/TRBN/trsample/2002 …
    • good
    • 2

T型までは順調に理解できていたのに、突然π型が登場して意味不明?



★回答


(目的)周波数特性の把握
四端子回路網 (入出力のある箱)で
振幅 位相 遅延 の周波数特性を見るには
Hパラメーターが都合いい 
実際に使う時は完成された箱として使用するのでこれでいいのだ。
マクロ的にみれば Hパラ→システム関数表現に書き換え
箱(システム関数)H(s) デジタルはH(z) で表現すれば システム設計がしやすくなる。


(物理パラメーターの把握と計算 測定)
高周波ではYパラメーターのほうが測定しやすい
高周波の場合 本来Hパラメータは実数であるが,周波数が高くなる
と位相の遅れを示す虚数成分が混在してくる.

π形等価回路ではこの虚数成分をコンデンサのリアクタンスで表すことで
回路定数が実数になる。
低周波ではπ形等価回路もhパラメータ等価回路も
同等であるが,高周波ではπ形等価回路の方が扱いやすいことになる。

http://www.ice.gunma-ct.ac.jp/~mame/kougi/denshi …

(扱うデバイスの性質)
gmを使ったハイブリッドπモデルを使うと
FETの理解に都合がいいと考えられる
モデル↓
http://www.ele.kochi-tech.ac.jp/tacibana/2012/an …

(高周波固有の問題)
高周波回路は本質的に難しい問題を抱えています。
これは、配線材料のインダクタンスを無視できなくなること
異なる線材間のコンダクタンスが無視できなくなること
複雑な回路の 分析や期待と異なる回路の動作が発生するから。
なお、線材の長さによる影響は、線をなるべく短くすることで対応できます
一方、トランジスタの端子間のコンダクタンスなどはどのようにしても無視で きません。
http://edu.net.c.dendai.ac.jp/linearamp/11th/


※(答え)
hパラメーターを基本として
すべての接地(B C E接地)で Tモデルで求めるでも
かまわないが不便だから。
でも実際はコンピューターCADで行うのである。

※ちなみに 当方高周波電子回路の専門じゃないです
あしからず
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qトランジスタの等価回路の導出

ベース接地トランジスタと、エミッタ接地トランジスタの等価回路についての質問です。

それぞれT形小信号等価回路から小信号等価回路を導出しなければならないのですが、導出方法が分かりません。
この場合、それぞれどのように導出していったら良いのでしょうか。

ご回答いただければ幸いです。よろしくお願いいたします。

Aベストアンサー

●http://www-lab.ee.uec.ac.jp/text/trAmpDesign/images/t.gif
(ZgとZLは、無視します。)
エミッタ接地だとして、hieを求めるには、hieの定義が出力短絡のときのvb/ibですよね。
そこで、まず、T形等価回路の出力端子を短絡した回路を書きます。
すると、reと(1-α)rcが並列となります。
電流は、コレクタからβ・ib(電流源)とベース側からibが合流して、reに流れます。ib+βib=(1+β)・ibです。
reの両端電圧をvbeとすると、
vbe=【reと(1-α)rcの並列】×(1+β)・ib ・・・(1)
となります。
T形等価回路の方程式は、以下の通りとします。
vb=rbib+vbe ・・・(2)
(2)式に(1)式を代入します。
vb=rbib+【reと(1-α)rcの並列】×(1+β)・ib 
これを整理して、vb/ibを求めれば出来上がりです。
hie=vb/ib
  =rb+(rerc/(re+(1-α)rc))

hfeも同様に、hfe=ic/ib (出力短絡) が定義ですので、
回路を見ながら、式を変形していけばいいです。(電流の向きに注意)
hre、hoeはib=0ですので、電流源(βib)もなくなります。

後は、ちょっと考えてみてください。
時々見に来ますので、質問がありましたらどうぞ。

●http://www-lab.ee.uec.ac.jp/text/trAmpDesign/images/t.gif
(ZgとZLは、無視します。)
エミッタ接地だとして、hieを求めるには、hieの定義が出力短絡のときのvb/ibですよね。
そこで、まず、T形等価回路の出力端子を短絡した回路を書きます。
すると、reと(1-α)rcが並列となります。
電流は、コレクタからβ・ib(電流源)とベース側からibが合流して、reに流れます。ib+βib=(1+β)・ibです。
reの両端電圧をvbeとすると、
vbe=【reと(1-α)rcの並列】×(1+β)・ib ・・・(1)
となります。
T形等価...続きを読む

Q電気回路のπ型回路の2端子対回路の問題です。 自分で考えたのですが全然わかりません… 誰か助けてくだ

電気回路のπ型回路の2端子対回路の問題です。
自分で考えたのですが全然わかりません…
誰か助けてください。お願いします。

Aベストアンサー

ひとつだけ。

V1=a11V2+a12I2
I2=0とすると
a11=V1/V2です。
I2=0ということは2-2'は開放ですから、
V2=V1R3/(R1+R3)
a11=V1/V2=V1(R1+R3)/V1R3=(R1+R3)/R3

同様にa21が導けます。

つぎはV2=0として同じことをしてください。
a12とa22がわかります。V2=0ならR3は短絡ですね。

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

Qエミッタ接地増幅回路について教えてください><

教えていただきたいことは2つあります。
(1)エミッタ接地増幅回路はなぜ入出力波形の位相が反転するのでしょうか。
(2)エミッタ接地増幅回路はなぜ入力電圧が大きくなったとき出力波形が歪んでしまうのでしょうか。

1つでもわかる方がいらっしゃいましたらどうか回答よろしくお願いします。

Aベストアンサー

参考URLのトランジスター(エミッタ接地)増幅回路について
Ic-Vce特性と負荷線の図を見てください。
参考URL:
ttp://www.kairo-nyumon.com/analog_load.html

(1)
バイアス電圧を調整して図4の動作点(橙色の点)をVbe特性の中心に設定してやり、その動作点を中心に入力電圧Vbeを変化させてやるとVceとIcが負荷線上で変化して動きます。入力電圧Vbeが増加すると出力電圧Vceが減少し、入力電圧Vbeが減少すると出力電圧Vceが増加します。つまり出力電圧波形の位相は入力電圧の位相が逆になります。つまり、入出力波形の位相が反転することになります。

(2)
入力電圧Vbeが大きくなったとき出力波形が歪んでしまうのは、動作点が負荷線の線形動作範囲の上限に近づくとそれ以上Vceが頭打ちになって、出力電圧波形が飽和してしまいます。言い換えればコレクタ電圧Vceは接地電圧と直流電源電圧Vccの範囲でしか変化できません。その出力電圧波形は入力電圧Vbeが負荷線上の線形増幅範囲だけです。線形増幅範囲を超えるような大振幅の入力Vbeを入力すると出力電圧の波形が飽和して波形の上下が歪んだ(潰れた)波形になります。

お分かりになりましたでしょうか?

参考URL:http://www.kairo-nyumon.com/analog_load.html

参考URLのトランジスター(エミッタ接地)増幅回路について
Ic-Vce特性と負荷線の図を見てください。
参考URL:
ttp://www.kairo-nyumon.com/analog_load.html

(1)
バイアス電圧を調整して図4の動作点(橙色の点)をVbe特性の中心に設定してやり、その動作点を中心に入力電圧Vbeを変化させてやるとVceとIcが負荷線上で変化して動きます。入力電圧Vbeが増加すると出力電圧Vceが減少し、入力電圧Vbeが減少すると出力電圧Vceが増加します。つまり出力電圧波形の位相は入力電圧の位相が逆になります。つまり、入出力波...続きを読む

Q図に示すπ形抵抗減衰器の減衰量(電圧)の値を14dBとしたい。このとき

図に示すπ形抵抗減衰器の減衰量(電圧)の値を14dBとしたい。このときRの値として最も近いものを下の番号から選べ。ただし、log5≒0.7とする。

答えは120Ωになるのですが、計算方法がわかりません。
ご教授願います…。

Aベストアンサー

>減衰量(電圧)の値を14dBとしたい

-14dB、つまり約5分の1の電圧にしたい、という事ですね。
(電圧比 2倍≒6dB)
log 5 ≒ 0.7 → -(log 5 ) x 20 ≒ -14 [dB]

「どことどこを?といえば、それは
「入力抵抗」の2端子に電圧を与えると、その5分の1の電圧が
「負荷抵抗」の2端子に現れるようにしたい、という事です。

回路図を変形すると少し見やすくなります。(添付図)
75Ωと「負荷抵抗50Ω」の並列接続の合成抵抗は30Ωです。

単純に、R と 30Ω で分圧されると 30Ωの両端が5分の1ということは
R:30Ω = 4:1 という事なので、R=120Ωだとわかります。

もう1つの75Ω抵抗は、分圧には関係ありません。
が、「減衰回路を入れてもトータルの負荷抵抗が50Ωになるように」
この値が使われます。全体の合成抵抗を求めてみれば、ちゃんと50Ωになります。
尚、π型はどちら方向でも合成負荷抵抗値が同じく50Ω、減衰率が同じく-14dBになる、
という特徴がある減衰回路です。

Qトランジスタのhパラメータについて

トランジスタのhパラメータについていくつか質問させて下さい。

(1)hパラメータの物理的意味について

(2)hパラメータが一般的にトランジスタの等価回路定数として用いられる理由

(3)hパラメータの実測値と規格表の値を比較した場合、その誤差はなぜ生じるか

以上です。

回答してくださる方をお待ちしております。

それでは、よろしくお願いいたします。

Aベストアンサー

(1)hパラメータの物理的意味について

トランジスタに限りませんが入出力特性が明らかになるのです 設計に欠かせません 
こう 入力すれば こう 出力する と解ります 入出力特性が計算で求められるのです

(2)hパラメータが一般的にトランジスタの等価回路定数として用いられる理由

hパラメータは主に低周波で良く近似出来る 高周波ではyパラメータが 超高周波ではSパラメータ
他に4端子パラメータがあります 周波数によって使い分けられます 近似の仕方に色々ある訳です

(3)hパラメータの実測値と規格表の値を比較した場合、その誤差はなぜ生じるか

トランジスタ自身にバラツキがあるから 例えば hfe コレクタ電圧電流温度 同一条件でも5倍位は普通です
メーカーカタログに載っているグラフは参考であり 保証ではありません
保証はあくまでも仕様書にあるものだけです 全ての条件で保証出来ませんので条件が付いてます
例えば 温度、電圧、電流etc hfeは温度50度の変化で約50%変化します 覚えやすいですね?
こんな大きなバラツキがあって設計に役立つの?と言いたいかも知れません
でも無かったらもっと大変です 約に立っているのです

メーカーカタログの見方を知る事が大事なのです。

(1)hパラメータの物理的意味について

トランジスタに限りませんが入出力特性が明らかになるのです 設計に欠かせません 
こう 入力すれば こう 出力する と解ります 入出力特性が計算で求められるのです

(2)hパラメータが一般的にトランジスタの等価回路定数として用いられる理由

hパラメータは主に低周波で良く近似出来る 高周波ではyパラメータが 超高周波ではSパラメータ
他に4端子パラメータがあります 周波数によって使い分けられます 近似の仕方に色々ある訳です

(3)hパラメータの...続きを読む

Q回路からYパラメータを求めたいのですが

図の回路からYパラメータを求める問題について。
どのように解いていいのかわから質問しました。

ポート1とポート2を短絡させてI1とI2を求めてYを出すやり方でやっています。
その手順の途中で電流がどこにどの方向に流れているかわからなくなってしまいます。

自分でポート2(右側)をさせたときの場合を解いてみたので、あっているか見てもらえないでしょうか?

ポートが短絡の時(V2=0)
RとLの並列にCが直列なので、合成して1/(8-j6)

したがって、I1=1/(8-j6)*V2

またI2はコイルにしか流れないので、I2=-(V2/jwc)=j/20*V2

このようになったのですがどうでしょうか?
ポート1を短絡させた時も同様の方法で解いてみたのですが、わからなくなってしまいました。

よろしくお願いします。

Aベストアンサー

「交流・定常状態」のハナシらしい。
ならば、素直にポート変数の連立式を書けば?

 V1 = (R + Zc)*I1 + R*I2
 V2 = R*I1 + (Zl + R)*I2

このペアから Y パラメータが求まりませんか?
    

Q入力インピーダンスと出力インピーダンスについて

電気回路の初心者です。ネットのサイトで次のような説明を読みました。

入力インピーダンス(抵抗)が大きいと、電流があまり流れません。
電流があまり流れないと言う事は、半導体が作動するのにエネルギーが少なくてすむ (= 電圧降下が小さい) ということです。
作動エネルギーが少ないと、他の回路へエネルギー(電圧)を、振り分けることが出来きます。
以上の理由により、 入力インピーダンスは高いほど良い ということになります。
(略)
出力インピーダンスとはなんでしょうか?
マイクのように、信号を発信する側が、もともともっている内部抵抗です。
では、出力インピーダンスは、低いほど良い理由はなぜでしょうか?
マイクの出力インピーダンス(内部抵抗)が大きいと、自分自身でエネルギー(電圧)を使ってしまい、小さな音しか出せません。

私にはこの説明が理解できません。
入力インピーダンスの説明では、インピーダンスが大きいと、半導体が作動するのにエネルギーが少なくてすむ、と言っています。
ところが出力インピーダンスの説明では、インピーダンスが大きいと自分自身でエネルギーを使ってしまう、つまり多くのエネルギーが必要だと言っています。どう考えればいいのでしょうか。
何か基本的なことが理解できていない気がしてストレスがたまっています。

電気回路の初心者です。ネットのサイトで次のような説明を読みました。

入力インピーダンス(抵抗)が大きいと、電流があまり流れません。
電流があまり流れないと言う事は、半導体が作動するのにエネルギーが少なくてすむ (= 電圧降下が小さい) ということです。
作動エネルギーが少ないと、他の回路へエネルギー(電圧)を、振り分けることが出来きます。
以上の理由により、 入力インピーダンスは高いほど良い ということになります。
(略)
出力インピーダンスとはなんでしょうか?
マイクのように、信...続きを読む

Aベストアンサー

こんにちは。
一生懸命お考えのようですね。
また、電池のモデルでほぼ到達できそうなところとお見受けします。

次のような説明ではいかがでしょうか。
ポイントは、「1Vを出力しようとして1Vとして受け取ってくれるかどうか。直列に入った”出力妨害抵抗”と並列に入った”入力妨害抵抗”が邪魔をする」

・まず、出力装置。出力装置は電池です。
 理想的な出力装置を考えましょう。これは電池(発電機)の一種と考えることができ、「0.5Vを出力すべき」「1Vを出力すべき」とき、それぞれその電圧が確実に出力されるべきでしょう。
出力に100オームの負荷抵抗をつないだとき(電流がそれぞれ5mA、10mAの弱い電流)はもちろん、負荷抵抗が1オームのとき(電流はそれぞれ500mA、1Aの大量の消費電流)
でもでも負けず、出力端子には正確に0.5V、1Vが現れるべきです。
ところが現実には、出力回路内に妨害抵抗が生じます。これは、内蔵電池と出力端子との間に、例えば1オームが「直列に」入っている状態です。
このような出力端子に負荷抵抗をつないでみましょう。
電池が正確に0.5V(又は1V)を発生しており、出力端子の向こう側に100オームの負荷抵抗をつないであるなら、妨害抵抗によってわずかに電圧が低下し、
出力端子電圧は0.495V(又は0.99V)となって端子電圧としては誤差が発生し、さらに負荷抵抗が1オームになると、出力端子の電圧は0.25V(0.5V)で、大幅に不正確になってしまいますね。
「出力インピーダンス」とは、単純には「正確な電圧を発生させる電池と出力端子との間に直列に入っている妨害抵抗」ということができます。

・次に入力装置。テスター(電圧計)と考えましょう。
 理想的なアナログ電圧計を考えましょう。アナログ電圧計は、コイルに電流を流すと永久磁石との間で引力や反発力を生じて、ねじりバネをねじる強さとバランスさせることで
所定の位置まで針を動かすことはご存知でしょう。
安物はコイルの巻き数が少ないので、大きく針を振るためにはたくさんの電流を流す必要がありますが、高価なもの(高感度)は、コイルの巻き数が多く、わずかな電流でも大きく振れます(感度が高い)。この延長で、理想的なアナログ電圧計とは、電流をまったく流さなくても針が大きく振れるものです。
このとき、理想的な電圧計と、安物の電圧計の違いは、「並列に入った妨害抵抗」と考えることができます。
理想的な電圧計はまったく電流が流れないのに、安物は大量に流れる。仮に1V表示するのに安物は1A流す必要があるとすると、抵抗値は1オームとなり、これは、理想的な電圧計に並列に1オームの抵抗を入れたのと同じになります。
 1Vを出力しようとする出力装置が理想的(直列の妨害抵抗が入っていない)なら、どちらの電圧計をつなごうが端子電圧は同じ1Vで、電圧計としても1Vを表示しますが、出力装置の中に1オームの妨害抵抗が直列に入っている場合(出力インピーダンス1オーム)、電圧計が理想的ならなら直列の妨害抵抗があっても電圧降下が生じないので1Vを表示しますが、安物の電圧計(又は等価的につくった、理想的な電圧計に1オームの並列妨害抵抗をつないだもの)では、大きな電圧降下が生じて出力(=入力)端子電圧は0.5Vとなってしまいます。

・・・ということで、「出力インピーダンス」とは「出力に直列の妨害抵抗」と考えれば理解しやすく、「入力インピーダンス」とは「入力に並列の妨害抵抗」であり、どちらか一方が理想的(「直列の妨害が0オーム」か、「並列の妨害が無限大オーム」)ならば他方は理想的である必要はないが、現実には、どちらの妨害抵抗も存在する以上、「出力インピーダンスは小さく、入力インピーダンスは大きい」ほうが望ましいということになります。

(ご質問の中にある、”入力インピーダンスが大きいとエネルギーが少なくてすむ vs 出力インピーダンスが大きいとエネルギーがたくさん必要”の矛盾に関する疑問も、この「直列」と「並列」の関係ならご理解いただけるのではないでしょうか。)

なお、他の方から、「インピーダンスは必ずしも大きい(小さい)ほうが良いのではなく、マッチング(一致)が大切」という意見が出ていますが、これは次のように説明できます。
・「信号」は「情報」を送るので、基本的には”電圧だけが重要で、エネルギー(電力)は食わせたくない”。この前提では、上記の理想論のとおりであり、特に入力インピーダンスは無限大が良い。
・しかし、実際には、エネルギーが必要(アナログ電圧計でもバネをねじる仕事が必要)。したがって、どうしても一定量の電流を流す必要があり、入力インピーダンスを無限大にはできない。
このとき、ある法則により「出力インピーダンスと入力インピーダンスが一致したとき、入力側(受け取る側)に最大のエネルギーを与えることができる」という結果になっているので、両インピーダンスを一致させるのがいちばん良い
・さらに、別の法則から、高周波(高速で電圧が変動するので、長いケーブルにおいてはケーブルの場所によって電圧が異なる)においては、インピーダンスが一致しないと、「信号反射」等により波形が変形してしまうという結果になっている。

さてさて、すっかり長くなってしまいましたがいかがでしょうか。
お役に立てば幸いです。

こんにちは。
一生懸命お考えのようですね。
また、電池のモデルでほぼ到達できそうなところとお見受けします。

次のような説明ではいかがでしょうか。
ポイントは、「1Vを出力しようとして1Vとして受け取ってくれるかどうか。直列に入った”出力妨害抵抗”と並列に入った”入力妨害抵抗”が邪魔をする」

・まず、出力装置。出力装置は電池です。
 理想的な出力装置を考えましょう。これは電池(発電機)の一種と考えることができ、「0.5Vを出力すべき」「1Vを出力すべき」とき、それぞれその電圧が確実に出力さ...続きを読む

Qブリッジ回路の平衡条件について教えて下さい。

ブリッジ回路の平衡条件について教えて下さい。

  ブリッジ回路において、A-B間の電位が等しくなり、電流計がゼロ(電流値が0 [A])を示す条件をブリッジ回路の平衡条件といい、抵抗(R1,R2,R3,R4)をタスキ掛けした値が等しい時にブリッジ回路の平衡条件が成り立つ。
○R1R4=R2R3

とあります。

何故このようになるのでしょうか?
この時、
R1+R3=R2+R4
になると考えても問題ないでしょうか?

宜しくお願いします。

Aベストアンサー

R1とR3の点の電位Aと、R2とR4の点の電位Bが同じであれば平衡している状態ですね。
A点とB点が同電位となるには、
R3/(R1+R3)=R4/(R2+R4)・・・・が成り立てば平衡となります。
式を変形すると、
R1*R4=R2*R3・・・・となります。

>何故このようになるのでしょうか?
上の説明を参照ください。

>この時、R1+R3=R2+R4
>になると考えても問題ないでしょうか?
いいえこれは誤りです。
R1=R2、R3=R4 の場合のみしか成り立ちません。
R1*R4=R2*R3 か、R3/(R1+R3)=R4/(R2+R4)・・・・です。
 


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング