人に聞けない痔の悩み、これでスッキリ >>

機械工学科出身のものです。電子回路について一冊本を
読んで基礎を勉強したのですが、いまいちピンときません。

電気回路に詳しくような人間でも理解できる説明が
あったらお願いできませんか?もう何冊か電子回路の本を
勉強するつもりですが・・・

よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (5件)

回路の意味の考え方


機械系と電気系の相対性があります。電気回路の現象は2次の微分方程式で記述できますが、この微分方程式の係数になる抵抗、キャパシタンス(コンデンサ)、インダクタンス(コイル)を機械系の微分方程式に置き換えて考察するものです。

ローパスフィルタは機械であれば配管内の圧力の変動周期の短期変動成分検出して除去させる機能です。除去する部分はハイパスフィルターになっていて、本管に生じた圧力変動を検出してダンパー回路に導いて減衰させています。フィルタの特性は配管径(圧損)とサージサプレッサ(サージタンクやダンパー)の容量で決まることになります。

電気回路は並列回路の場合は電圧方程式で考え、直列回路の場合は電流方程式で考えるため、LとCの意味が変わります。

電圧方程式の場合、
Ri+L di/dt+ 1/Cx(iの時間積分)=0
電流方程式の場合
e/R + C de/dt + 1/L x(eの時間積分)=0
で表現されます。

微分回路は回路に直列のコンデンサか回路と並列に入れたコイルになります。
または回路に直列のコイルか、回路に並列のコンデンサになります。
微分回路=変化を検出する回路です。上記のL di/dtまたはC de/dt の部分がこれにあたります。微分回路に信号(電流または電圧)を減衰させるRを加えるとフィルタになります

変化を検出して変化した信号成分は抵抗で減衰させてしまうというのがローパスフィルタ(高周波領域阻止)の基本的な発想です。
変化を検出した信号以外を減衰させるとハイパスフィルタ(低域減衰)となります。

勉強の仕方
フィルタは奥が深く、電気系でも回路の定数をすぐに思い浮かべることができる人は少ないと思います。これは車のサスペンションの最適設計と同レベルです。
サスペンションにはダンパー、コイル、ばね下重量のつなぎ方といった定石があるのと同じく、フィルターにもチェビシェフとか基本回路が存在します。
また電子回路シミュレータにはこれらの回路の特性を模擬実験させる機能がありますので理解に役立ちます(フリーソフトもあります)
実務で行う場合、基本回路の知識を増やし、フィルタに要求される仕様をはっきりとさせ、シミュレータで当たりをつけ、実際の部品で実験してオシロやFFTアナライザで観測して実際と理論の違いを確かめるといった手順になります。

最近ではFFTのように演算によってフィルタを実現することで回路を使わないことも流行しています。(ワンチップICで実現しているものもある)でも意図しないノイズや回り込みの除去には外部フィルタは有効であり続けるので回路方程式からのアプローチは今後もなくならないと思います
    • good
    • 0

機械工学科の出身ということですので、数学はある程度は理解できるものとして説明します。



ハイパスフィルタですが、これは直流や低い周波数の信号をカットし、高い周波数の信号を通過させるフィルタです。理想的なハイパスフィルタはある周波数以上のゲイン=1、その周波数未満のゲイン=0というものですが、現実的はそのようなフィルタは作れません。
通常は、直流信号でのゲイン=0で周波数が高くなるにしたがって徐々にゲインも増加し、ある周波数以上でゲイン=1となるような特性を持っています。
微分回路ですが、これに正弦波の信号を入力したときに出力信号が入力信号の周波数によってどうなるかを考えて見ると、
out=d(in)/dt=d(sin(2*π*f*t))/dt=2*π*f*cos(2*π*f*t)
となりますから、出力信号はfに比例して大きくなります。つまりこの周波数特性がハイパスフィルタと似た特性であり、1次のハイパスフィルタの場合にはある周波数まではゲインがfに比例して大きくなるため、同じような挙動になるということです。
    • good
    • 1

最も簡単な一次HPFについて考える。


入力信号電圧vとコンデンサcと抵抗rを用意して
vの+をcの一端にcの他端をrの一端にrの他端をvの-に接続し
出力電圧wをvの-側の電位に対するcとrの接続点の電位とする。
vの+からvの-に向かって流れる電流は
c×d(v-w)/dtだからオームの法則により
w=rc×d(v-w)/dtである。
すなわち(1+rc×d/dt)w=rc×dv/dtである。
2πrcf<<1ならばw=rc×dv/dtである。
だから出力wは入力vの微分的な性質がある。
    • good
    • 1

本を読んだら、その後は実験をお薦めします。



抵抗、コンデンサ、コイルなどを使って回路を組んで出力波形を見てみると良く理解できます。
積分回路(ローパスフィルタ)がわかりやすいですから、それから試してみます。そうすると微分回路も理解できます。ハイパスフィルタは微分回路の応用です。結局のところコンデンサの特性を利用した物ということです。

本を読んで電子回路を理解することには難しいものがあります。壁を乗り越えてしまうとある程度理解できるのですが、それでも私は実験による理解が大きなウェートを占めていました。

金属の焼入れは理解できても、なぜそうなるのか理解できないことに似ています。

参考URL:http://akizukidenshi.com/
    • good
    • 0

まず始めにお断りしておきますが、ハイパスフィルターといっても色々種類が有って


微分回路と完全に同じ物ではないということです。
あくまでも性質の似ている面があるということです。

ハイパスフィルターは高い周波数を通し、低い周波数および直流を通しません。
つまり変化の早いものは大きく出力し、変化の遅いものはほとんど出力しない
ということです。
微分が変化の勾配を計算するのと似ているのです。
それでハイパスフィルターは微分回路に似ているといいます。
    • good
    • 0
この回答へのお礼

ありがとうございます.イメージがなんとなく
わかりました.

お礼日時:2003/07/07 12:50

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q微分回路・積分回路について

微分回路と積分回路は、ローパス・フィルタやハイパス・フィルタと、どのような関係があるのでしょうか?

今読んでいる書籍に、チラッと載っているのですが、Webで見ると同一回路ではなく、どのような関連性があるのか分かりません。

ご教授のほどを、お願いします。

Aベストアンサー

 電子回路の動作を観るときに、時間軸で観る場合と周波数軸で観る場合があります。ご質問の内容は正にそれにあたっていると思います。
【微分回路と積分回路】
 回路の動作として、入力波形が出力時に、時間軸でみた場合に、どのように変化をしているのかと言う立場で解釈すると、あたかも微分や積分したかのように動作する回路のことをいいます。具体的には波形整形を行う場合に、これらの回路を使います。
【ローパス・フィルタやハイパス・フィルタ】
 周波数軸でみた場合に、ある周波数以下の信号を通過させるのがローパス・フィルタで、ある周波数以上の信号を通過させるのがハイパス・フィルタです。
【両者の関係は?】
 回路に要求する事が違うのですが、ローパス・フィルタの仲間に積分回路が含まれ、ハイパス・フィルタの仲間に微分回路が含まれると言う解釈が成り立つと思います。
【追記】
 kansai_daisukiさんには以前も回答した記憶があります。勉強を続けられているんですね。「継続は力なり」。尊敬します。さて、電子回路はリアルな学問です。実際には回路を製作して実験するのがスキルアップには一番なのですが、その環境を求めるのが困難なら、PSPICEは、いかがですか?電子回路のシミュレータプログラムです。これなら、パソコンさえあれば実験できます。参考にしてください。

参考URL:http://www.cqpub.co.jp/hanbai/books/36/36271.htm

 電子回路の動作を観るときに、時間軸で観る場合と周波数軸で観る場合があります。ご質問の内容は正にそれにあたっていると思います。
【微分回路と積分回路】
 回路の動作として、入力波形が出力時に、時間軸でみた場合に、どのように変化をしているのかと言う立場で解釈すると、あたかも微分や積分したかのように動作する回路のことをいいます。具体的には波形整形を行う場合に、これらの回路を使います。
【ローパス・フィルタやハイパス・フィルタ】
 周波数軸でみた場合に、ある周波数以下の信号を通...続きを読む

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

Q微分回路と積分回路の特徴について

微分回路がハイパス、積分回路がローパスになる理由を教えてください。出来れば回路図との関係性もわかりやすく教えてください。

Aベストアンサー

コンデンサに蓄えられている電荷と端子電圧の間にはQ=C・Vの関係が有ります。
電荷Qは電流を時間で積分したものなので、Q=∫i・dt になります。
すなわち ∫i・dt=C・V です。 この式を t で微分すると i = C・dV/dt です。

つまり、コンデンサの端子電圧を見ると電流の積分値が見えます。
コンデンサの電流値を見ると電圧の微分値が見えます。

積分回路で抵抗を入れるのは電流を出来るだけ一定にする為ですが、コンデンサの電圧が変化する事で抵抗に流れる電流も変化するので電流が一定にはなりません。
その為、積分回路とみなせるのは短時間の間だけです。

微分回路で抵抗を入れるのは電流を電圧に変換して観測しやすくする為ですが、抵抗に現れる電圧によりコンデンサに加わる電圧が変化するので電圧が一定になりません。
その為、微分回路とみなせるのは短時間の間だけです。

Q遮断周波数と時定数について質問です。

低域遮断フィルターの特性を遮断周波数ではなく時定数で表わすのはどうしてでしょうか。

遮断周波数=1/2πτ
より、遮断周波数と時定数との関係はなんとなくわかるんですが。

医用機器を使用することと何か関係はありますか?

Aベストアンサー

RCローパスフィルタのステップ応答は
y(t)=a{1-e^(t/τ)}と書けます。
ここで,aはステップの振幅、τは時定数で
τ=RC
で与えられます。
一方、RCローパスフィルタの伝達関数G(jω)は
G(jω)={1/(jωC)/{R+1/(jωC}=1/(1+jωRC)
|G(jω)|=1/√{1+(ωRC)^2}
で|G(jω|=1/√2の時のω=2πfのf=fcをカットオフ周波数といいます。
この時
20log|G(jω)|≒-3[dB]
となります。ωRC=ωcRC=1、ωc=2πfcからカットオフ周波数fcは
fc=1/(2πRC)
となります。先の時定数τを使えば
fc=1/(2πτ)
という関係式が出てきます。

生体系の信号や医用機器で扱う比較的低い周波数成分しか含まない生体信号は、微小で、周囲の高周波ノイズの中に埋もれてしまいます。パルス性の高周波ノイズや高周波電磁波ノイズ(生体系の電気現象に比べて大きい)を除去するために高周波ノイズ周期に比べてそれよる長い時定数で生体系の信号の変化に比べ小さな時定数を、医療計測計の記録計やディスプレイを見ながら設定する法が便利だからでしょう。カットオフ周波数より可視化されたディスプレイ上では、このパルス性ノイズを除去するには、画面上でどの位の時定数にしたら良いかがビジブル(視覚的)に分かり易いということでしょう。

RCローパスフィルタのステップ応答は
y(t)=a{1-e^(t/τ)}と書けます。
ここで,aはステップの振幅、τは時定数で
τ=RC
で与えられます。
一方、RCローパスフィルタの伝達関数G(jω)は
G(jω)={1/(jωC)/{R+1/(jωC}=1/(1+jωRC)
|G(jω)|=1/√{1+(ωRC)^2}
で|G(jω|=1/√2の時のω=2πfのf=fcをカットオフ周波数といいます。
この時
20log|G(jω)|≒-3[dB]
となります。ωRC=ωcRC=1、ωc=2πfcからカットオフ周波数fcは
fc=1/(2πRC)
となります。先の時定数τを使えば
fc=1/(2πτ)
という関係式が出てきます。

生...続きを読む

Q遮断周波数のゲインがなぜ-3dBとなるのか?

私が知っている遮断周波数の知識は・・・
遮断周波数とはシステム応答の限界であり、それを超えると減衰する。
<遮断周波数の定義>
出力電力が入力電力の1/2となる周波数を指す。
電力は電圧の2乗に比例するので
Vout / Vin = 1 / √2
となるので
ゲインG=20log( 1 / √2 )=-3dB
となる。

ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2)
となるのでしょうか?
定義として見るにしてもなぜこう定義するのか
ご存じの方いらっしゃいましたら教えて下さい。

Aベストアンサー

>ここで、なぜ出力電力が入力電力の1/2(Vout / Vin = 1 / √2)
>となるのでしょうか?
>定義として見るにしてもなぜこう定義するのか

端的に言えば、
"通過するエネルギー"<"遮断されるエネルギー"
"通過するエネルギー">"遮断されるエネルギー"
が、変わる境目だからです。

>遮断周波数とはシステム応答の限界であり、それを超えると減衰する。
これは、少々誤解を招く表現です。
減衰自体は"遮断周波数"に至る前から始まります。(-3dBに至る前に、-2dBとか、-1dBになる周波数があります)

QEXCELにてローパスフィルタを作成する

実験の測定データをEXCELでデータ整理しようと考えております。データ整理のためローパスフィルタをかけたいのですが、具体的にどういった式、もしくはEXCELの機能を使用したらいいのでしょうか?デジタルフィルタが良く分からないのでよろしくお願いします。
ちなみにローパスフィルタは1000Hzをかけたいです。

Aベストアンサー

時系列データの処理ならば

OutputData(n+1) = OutputData(n) + (InputData(n+1) - OutputData(n)) * dt / T

dt:データのサンプリング間隔
T:フィルタの時定数 1/2πf
f:カットオフ周波数
n,n+1:それぞれn個目,n+1個目のデータをしめす。

でいけると思いますが、一次のパッシブなんで効果が薄いかも。(普通はベッセルかけるんでしょうけど、そこまではわからない)

Q時定数について

時定数(τ=CR)について物理的意味とその物理量について調べているのですが、参考書等これといってわかりやすい説明がありません。どうが上記のことについて詳しく説明してもらえないでしょうか?

Aベストアンサー

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さいほど時間がかかります。逆に水槽が大きくても蛇口も大きければ水は短時間で出て行きますし、蛇口が小さくても水槽が小さければこれまたすぐに水槽はからっぽになります。
すなわち水がからっぽになるまでに要する時間の目安として
 水槽の大きさ×蛇口の小ささ
という数字が必然的に出てきます。ご質問の電気回路の場合は
 コンデンサの容量→水槽の大きさ
 抵抗→蛇口の小ささ
に相当するわけで、CとRの積がその系の応答の時間的な目安を与えることはなんとなくお分かり頂けると思います。

数式を使いながらもう少し厳密に考えてみましょう。以下のようにコンデンサCと抵抗Rとからなる回路で入力電圧と出力電圧の関係を調べます。
 + C  -
○─┨┠─┬──●
↑    <  ↑
入    <R  出
力    <  力
○────┴──●

入力電圧をV_i、出力電圧をV_oとします。またキャパシタCに蓄積されている電荷をQとします。
するとまず
V_i = (Q/C) + V_o   (1)
の関係があります。
また電荷Qの時間的変化が電流ですから、抵抗Rの両端の電位差を考えて
(dQ/dt)・R = V_o   (2)
も成立します。
(1)(2)を組み合わせると
V_i = (Q/C) + (dQ/dt)・R   (3)
の微分方程式を得ます。

最も簡単な初期条件として、時刻t<0でV_i = 0、時刻t≧0でV_i = V(定数)となるステップ応答を考えます。コンデンサCは最初は帯電していないとします。
この場合(3)の微分方程式は容易に解かれて
V_o = A exp (-t/CR)   (4)
を得ます。exp(x)はご存じかと思いますがe^xのこと、Aは定数です。解き方が必要なら最後に付けておきましたので参考にして下さい。
Cは最初は電荷を蓄積していないのですから、時刻t=0において
V_i = V = V_o   (5)
という初期条件が課され、定数Aは実はVに等しいことが分かります。これより結局、
V_o = V exp (-t/CR)   (6)
となります。
時間tの分母にCRが入っているわけで、それが時間的尺度となることはお分かり頂けると思います。物理量として時間の次元を持つことも自明でしょう。CとRの積が時間の次元を持ってしまうのは確かに不思議ではありますが。
(6)をグラフにすると下記の通りです。時刻t=CRで、V_oはV/e ≒0.368....Vになります。

V_o

* ←初期値 V        
│*
│ *
│   *         最後は0に漸近する
│      *       ↓
└───┼──────*───*───*───*─→t
t=0  t=CR
   (初期値の1/e≒0.368...倍になったタイミング)


【(1)(2)の解き方】
(1)の両辺を時間tで微分する。V_iは一定(定数V)としたので
0 = (1/C)(dQ/dt) + (dV_o/dt)
(2)を代入して
0 = (1/CR) V_o + (dV_o/dt)
-(1/CR) V_o = (dV_o/dt)
- dt = dV_o (CR/V_o)
t = -CR ln|V_o| + A
ここにlnは自然対数、Aは定数である。
この式は新たな定数A'を用いて
V_o = A' exp (-t/CR)
と表せる。

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さい...続きを読む

Q微分回路、積分回路の出力波形からの時定数の読み方

微分回路、積分回路それぞれに方形波を入力し、出力波形をオシロスコープで観察したのですが、この出力波形から時定数をどのように読み取ればいいのでしょうか?

Aベストアンサー

CR微分回路の場合には、最大出力電圧の37%まで出力電圧が落ちるまでの時間が時定数になります。
CR積分回路では、最大出力電圧の63%まで出力電圧が上がるまでの時間が時定数になります。

Qボルテージフォロワの役割がよく分かりません。

ボルテージフォロワは、電流が流れることで寄生抵抗によって電圧値が低下しないようにするために、回路の入力段及び出力段に入れるものであると思いますが、
これを入れるのと入れないのでは具体的にどのような違いが表れるのでしょうか?

オペアンプを使った回路では通常、電流は流れないはずですので、このようなものは必要ないように思うのですが、どのような場合に必要になるのでしょうか?

Aベストアンサー

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗にほぼ等しい。この抵抗の大きさはさほど大きくできない。)
非反転増幅回路を用いると、入力インピーダンスを大きくすることができます(非反転増幅回路の入力インピーダンスは非反転入力と反転入力のピン間インピーダンスにほぼ等しく、かなり大きな値になる。)が、増幅率が1よりも大きくなってしまいます。
これを元の信号のレベルに下げるために抵抗で分圧してしまうと、分圧に使用した抵抗分出力インピーダンスが増えてしまいます。これでは何のためにオペアンプを入れて電流の影響を減らしたの意味がなくなってしまいます。
元の電圧のまま、次の段に受け渡すにはボルテージフォロワがよいということになります。


次に、#1の補足に対して。
>反転増幅回路と非反転増幅回路は単に反転するかしないかの違いだと思っていたのですが、
>それ以外に特性が異なるのですか?
これは、上でも述べていますが、反転増幅回路と非反転増幅回路は、増幅回路の入力インピーダンスが異なります。
信号源の出力インピーダンスが大きく、電流が流れると電圧が変化してしまような用途では入力インピーダンスを高くできる非反転増幅が有利です。

>・出力インピーダンスとは出力端子とグラウンド間のインピーダンスだと思っていたのですが、それでいくと分圧するということは
>出力インピーダンスを下げることになるのではないのでしょうか?
違います。出力インピーダンスとは信号を発生させている元と入力先との間のインピーダンスを意味します。
出力インピーダンスは信号源から流れる電流による電圧降下の大きさを決定付けます。
オペアンプを使った回路での出力インピーダンスは、理想的な状態ですはゼロになります。
分圧用の抵抗を入れてしまうと、分圧に使用した抵抗のうち信号源と入力先に入っている抵抗分が出力インピーダンスとして寄与していしまいます。

>・それと非反転増幅回路の出力を抵抗などで分圧することで増幅率を1以上にするデメリットを教えて下さい。
これは、何かの勘違いですね。
非反転増幅回路で増幅率を1よりも大きくしたいのなら分圧などする必要はありません。
非反転増幅で増幅率を1以下にしたい場合は、何らかの方法で信号を減衰させる必要があります。ここで分圧を使うのはあまり好ましいことではないということです。

#1のものです。

ちょっと説明がうまくなかったようです。
ボルテージフォロワを使用するのは、次の段の入力インピーダンスが小さく電流がある程度流れる場合に、信号を元の電圧をそのまま受け渡す際に使用します。
とくに信号源の出力インピーダンスが大きいときは信号源に流れる電流を減らすため、受ける側の入力インピーダンスを大きくする必要があります。
反転増幅回路を用いると、入力インピーダンスを大きくすることができません。(反転増幅回路の入力インピーダンスは信号源と反転入力端子の間の抵抗...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング