会員登録で5000円分が当たります

次の関数をsinにより半区間展開せよ
g(t)=t 0≦t≦π

こちらの問題の解き方が全く分かりません…
誰か教えてください
お願いしますm(_ _)m

A 回答 (1件)

>sinにより半区間展開せよ。



この意味がはっきりしませんが
「0≦t≦π」の範囲でsin関数とその高調波を使って展開せよ。
ということであればg(t)が奇関数の性質を持たせるために
g(t)=t (-π≦t≦π)に拡張してフーリエ級数展開してから
0≦t≦πだけの範囲を取れば良い。

b[n]=(2/π)∫[0,π] t sin(nt)dt
=(2/π)[-t cos(nt)/n+∫cos(nt)/n dt][0,π]
=(2/π)[-t cos(nt)/n+sin(nt)/n^2][0,π]
=(2/π)[-πcos(nπ)/n]
=(2/n)(-1)^(n+1) (n=1,2,3, ... )

(答)
g(t)=Σ[n=1,∞] ((-1)^(n+1))(2/n)sin(nt)
=2sin(t)-sin(2t)+(2/3)sin(3t)-(1/2)sin(4t)+ ...
(0≦t≦π)
    • good
    • 0
この回答へのお礼

いまいち半区間展開に関しては理解できませんでしたが何となくは分かりました
ご回答ありがとうございます!

お礼日時:2014/04/30 21:06

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qベクトル場の面積分に関してです

1.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (-2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:面積分と極座標を用いなければならない)

2.半球面S:x^2+y^2+z^2=9, z≧0上でのベクトル場f = (2x, 2y, z)において、
  ∬s f・dS を求めよ。ただし単位法線ベクトルnは上向きに取る。
    (条件:ガウスの発散定理を用いなければならない)

この2問がどうしても解けないので教えていただけないでしょうか?
特に、1.に関しては「式変形の流れ」、2.に関しては、閉局面として扱って計算した後に底辺を除く必要があるので「底辺の計算方法」だけでも教えていただけると有難いです。

よろしくお願いします!

Aベストアンサー

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑・n↑ dS
= r^3 ∫[0,π/2] dθ ∫[0,2π] dφ (-2sin^2 θ cos 2φ + cos^2 θ)
= 2π r^3 /3
= 18π.

2.
Sに底面を合わせたものをEとし,Eを表面とする体積領域をVとすると,
ガウスの発散定理より

∫[E] f↑・dS↑
= ∫[V] div f↑ dV
= ∫[V] 5 dV
= 18π×5
= 90π.

で,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ - ∫[底面] f↑・dS↑
なのですが,底面での単位法線ベクトルは明らかにz軸に平行であるのに対し,
底面においてz = 0ですから,f↑は底面において f↑ = (2x,2y,0)となり
z軸に対して垂直です.
すなわち,底面においてf↑とn↑とは垂直なのです:
f↑・n↑ = 0.

したがって
∫[底面] f↑・dS↑ = ∫[底面] f↑・n↑ dS = 0
であり,求める積分は
∫[S] f↑・dS↑ = ∫[E] f↑・dS↑ = 90π.

ベクトルを表すために
r↑ = (x,y,z)
みたいな表記を使います.

1.
極座標(r,θ,φ)を用いると
x = r sin θ cos φ,
y = r sin θ sin φ,
z = r cos θ
であり,S上でrは一定値 r = 3 です.

∫[S] f↑・dS↑ = ∫[S] f↑・n↑ dS

なのですが,S上で
f↑・n↑
= f↑・r↑/r
= (-2x^2 + 2y^2 + z^2)/r
= (-2r^2 sin^2 θ cos^2 φ + 2r^2 sin^2 θ sin^2 φ + r^2 cos^2 θ)/r
= (-2sin^2 θ cos 2φ + cos^2 θ)r.

また,
dS = r^2 sin θ dθ dφ.
積分範囲はz ≧ 0なので,θは0からπ/2の値をとりうる.

以上より
∫[S] f↑・dS↑
= ∫[S] f↑...続きを読む

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む

Q単位法線ベクトルの問題なんですが。。。

曲面 4x^2y+z^3 = 4 上の点P(1, -1, 2)における単位法線ベクトルnを求めよ.

という問題です.

他の質問を見てf = (x,y,z) = 4x^2y+z^3-4
とするのはわかったのですがgradfがわからないです。。。

Aベストアンサー

未消化のgrad fを使わなくても以下のように出来ます。
いずれにしてもただ丸写しするのではなく教科書や講義ノートや参考書など
を復習して基礎的なことを勉強して、理解するだけの自助努力が大切です。

f(x,y,z)=4(x^2)y+z^3-4=0

全微分して
 8xydx+4(x^2)dy+3(z^2)dz=0

点P(1,-1,2)の座標を代入
 -8dx+4dy+12dz=0
 4(-2,1,3)・(dx,dy,dz)=0
法線ベクトル:±(-2,1,3)
 |(-2,1,3)|=√(4+1+9)=√14
単位法線ベクトルn=±(-2,1,3)/√14

Q球面上の面積分について

球面上の面積分について
A(→)=(xy、y、yz)を
半径1の円球面上で、Z軸からθ1とθ2の間の帯状の面で面積分したいのですが全くわかりません…
教えてください

Aベストアンサー

ガウスの定理を使うのよ。
∫A・ndS = ∫(∇・A)dV
∇・A = ∂A_x/∂x + ∂A_y/∂y + ∂A_z/dz = y + 1 + y = 2y+1

∫A・ndS = ∫(∇・A)dV = ∫∫∫(2y+1)dxdydz

ここで、極座標を使う。
 y = rsinθsinφ
 dxdydz = r^2sinθdrdθdφ
 0≦r≦1, θ1≦θ≦θ2, 0≦φ≦2π

∫∫∫(2y+1)dxdydz = ∫∫∫(2rsinθsinφ+1)r^2sinθdrdθdφ

積分範囲は 0≦r≦1, θ1≦θ≦θ2, 0≦φ≦2π。
この積分をやれば、答えは出ます。
タダの累次積分だから、後はできるでしょ。

頑張って計算してください。
積分はdr,dφ,dθの順番でやった方が楽ですよ、きっと。

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q台形の重心を求めるには

上底a 下底b 高さ h とした場合、台形の重心をもとめる公式は、 (2a+b)/(a+b)*h/3 でよろしいでしょうか?

Aベストアンサー

計算してみました。
面積
 A=(a+b)h/2
下底周りの断面一次モーメント
 S=a・h^2/2 + (b-a)h^2/6
  =h^2(2a+b)/6

重心位置、S/Aですから、
 G=(2a+b)/(a+b) ・ h/3

合ってますね。

Qcos(wt)のフーリエ変換について

g(t)=cos(wt)
をフーリエ変換したいのですが、
F[{exp(jwt)+exp(-jwt)}/2]
=F[exp(jwt)]/2+F[exp(-jwt)]/2

まではわかったのですが、この後どう進めればいいのでしょうか?
よろしくお願いします。

Aベストアンサー

#1,#2です。

A#2の補足の質問の回答

>=(1/2)δ(f0-f)+(1/2)δ(f0+f)
>で合ってますでしょうか?

間違いではないけど普通は
=(1/2)δ(f-f0)+(1/2)δ(f-f0)

なお、fは周波数を表す変数、f0は信号の周波数で定数
フーリエ積分で使うδ関数の定義ではδ(f)は偶関数で
δ(-f)=δ(f)です。

>∫[-∞,∞]exp(j2πft)=δ(f)
F(f)=δ(f)…(B) の時、
フーリエ逆変換の定義式から
f(t)=∫[-∞,∞]F(f)e^(j2πft)df
=∫[-∞,∞]δ(f)e^(j2πft)df
  =e^(j2π0t)=1 …(B)
このf(t)のフーリエ変換の定義式から
F(f)=∫[-∞,∞]f(t)e^(-j2πft)dt
=∫[-∞,∞] e^(-j2πft)dt ((B)を代入)
(A)からF(f)=δ(f)なので
 ∫[-∞,∞] e^(-j2πft)dt =δ(f)
この左辺でt=-t'と置換すると
 左辺=∫[-∞,∞] e^(j2πft')dt'=δ(-f)
が出てきます。
 この式で -f=f'と置換し、f',t'を改めてf,tと書くと
 左辺=∫[-∞,∞] e^(-j2πft)dt=δ(f)
が出てきます。
以上から
δ(f)=δ(-f)=∫[-∞,∞] e^(j2πft)dt
=∫[-∞,∞] e^(-j2πft)dt
という関係があることが分かります。

#1,#2です。

A#2の補足の質問の回答

>=(1/2)δ(f0-f)+(1/2)δ(f0+f)
>で合ってますでしょうか?

間違いではないけど普通は
=(1/2)δ(f-f0)+(1/2)δ(f-f0)

なお、fは周波数を表す変数、f0は信号の周波数で定数
フーリエ積分で使うδ関数の定義ではδ(f)は偶関数で
δ(-f)=δ(f)です。

>∫[-∞,∞]exp(j2πft)=δ(f)
F(f)=δ(f)…(B) の時、
フーリエ逆変換の定義式から
f(t)=∫[-∞,∞]F(f)e^(j2πft)df
=∫[-∞,∞]δ(f)e^(j2πft)df
  =e^(j2π0t)=1 …(B)
このf(t)のフーリエ変換の定義式から
F(f)=∫[-∞,∞...続きを読む

Q上三角行列同士をかけたときの積も上三角行列となることを示すには?

正方行列AとBがともに上三角行列であるとき、積ABもまた上三角行列となることを示せ。
という問題がわかりません。
自分で解こうとしましたが、以下のような状態で、証明できていません(^_^;)

行列式|A|はAの対角成分を掛け合わせたもの。同様に行列式|B|はBの対角成分を掛け合わせたものになっている。また、|AB|=|A||B|より、積ABの行列式はAとBの全ての対角成分を掛け合わせたものとなる。よって、|AB|はAとBの対角成分のみから構成されているので、積ABもまた上三角行列である???

Aベストアンサー

A, B が上三角行列なら、その (i,j) 成分は、
i < j のとき、A[i,j] = B[i,j] = 0 です。

A, B の積を作ると、
(AB)[i,j] = Σ{k=1…n} A[i,k] B[k,j] ですが、
i < j の範囲では…

  i ≧ k ≧ j とはなりえないので、
  i < k または k < j の少なくとも一方は成り立ち、
  A[i,k] と B[k,j] の少なくとも一方は 0、
  すなわち A[i,k] B[k,j] = 0 です。

  よって、Σ しても、(AB)[i,j] = 0。

これは、積 AB が上三角行列だということですね。

Q磁場と磁束密度の違い

磁場Hと磁束密度Bの違いとはなんですか?
使い分けは出来るのですがよくわかっていません。
具体的に教えていただけないでしょうか?

Aベストアンサー

追加です。

「EとH,DとB」という本が共立出版・物理ワンポイントシリーズにありました。
1冊の本になるくらいBとHの区別は難しい,というか私も理解に苦労した記憶があります。

B=μH 磁束密度B[Wb/m^2],透磁率μ[H/m],磁界H[A/m]
D=εE 電束密度D[C/m^2],誘電率ε[F/m],電界E[V/m]
J=σE 電流密度J[A/m^2],導電率σ[S/m],電界E[V/m]

これらの式は数学的には同じ形になり,ポアソン方程式の境界条件なども同じ形になります。

私もしばらく,B,H,D,Eという物理量の違いが理解できず,悶々としていました。
これらの中で
「導電率σの物質に電界Eをかけると,電流密度Jで電流が流れる」という,
微視的なオームの法則が一番イメージがわきやすかったです。

すなわち,
EやHは流れを作り出す「界」の大きさで,長さあたりの傾斜
J,B,Dはできた流れを,タバとしてみた「束」の面積あたりの密度
というイメージです。

EやHに,平行な長さをかけて積分した起電力[V],起磁力[A]
BやDやJに,垂直な断面積をかけて積分した,磁束[Wb],電束[C],電流束[A]

これらは同じ性質を持つことになります。このうち電圧(起電力),電流は電気回路の考え方に従い,
直列や並列に接続したときの性質がよく分かっています。

これを手がかりにして,

磁束や電束は流れる量で,電流と同じく「束」として一続きの糸のようにつながっている。
磁界や電界は流れを作るポテンシャル勾配「界」で,ぐるりと一周線積分すると起磁力,起電力になる,

というイメージがつかめました。

追加です。

「EとH,DとB」という本が共立出版・物理ワンポイントシリーズにありました。
1冊の本になるくらいBとHの区別は難しい,というか私も理解に苦労した記憶があります。

B=μH 磁束密度B[Wb/m^2],透磁率μ[H/m],磁界H[A/m]
D=εE 電束密度D[C/m^2],誘電率ε[F/m],電界E[V/m]
J=σE 電流密度J[A/m^2],導電率σ[S/m],電界E[V/m]

これらの式は数学的には同じ形になり,ポアソン方程式の境界条件なども同じ形になります。

私もしばらく,B,H,D,Eという物理量の違いが理解できず,悶々としていました...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング