5/27 回答が連続投稿される不具合が発生しております

金属Cuの4s電子の電子密度を求めなさいという演習問題が解けず、解答も無いので困っています。

おおかまな解法は体積Vの立方体中のフェルミガスを考え、運動量空間においてp~p+Δpの間の球殻の体積が4πp^2Δpでそれに対する状態数はD(E)ΔE=V/(2πh')^3×2×4πp^pΔpで、数密度はn=1/V×∫D(E)f(E)dEと求まる。これをEに直してフェルミ・ディラック積分をすれば、
n={(2mμ)^3/2}/(3π^2・h'^3)
と求まりました。この考え方と計算式が合ってるかどうかも怪しいのですが、イマイチ分からないのは「4s電子の」の部分です。どうすれば電子密度を4s軌道の電子だけに絞って計算する事ができるのでしょうか。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

遅くなりすいません。



#2に書いたように、4s電子=銅の自由電子なので、4s電子の電子密度を求めたければ自由電子の電子密度を求めてやればいいのです。なので、ご質問にあるようなやり方でも4s電子の電子密度を求めている事にはなります。でも、m,µのような値が既知であるという事にしていいのかは今までにお書きになっている内容だけからは分かりません。問題文に書いてないとしても演習問題であるのなら前後の文脈等もあるでしょうから、そういう所から判断して下さい。例えば教科書の自由電子模型について書かれた章で出てきた問題なら、お書きになっているやり方でいいのでしょうが、Hall効果の話をしている所で出てきた問題なら、Hall係数から求めるという流れになるだろうと思います。
    • good
    • 0
この回答へのお礼

補足にまで付き合ってくれて有難うございます。フェルミモデルの章なので多分大丈夫みたいです。
お世話になりました。

お礼日時:2014/10/30 04:48

何を前提として電子密度を求めろと言っているのか分からないので、その考え方でいいのかは知りませんけど、



銅の場合、Fermiエネルギーが4sバンド上にありますので、自由電子模型(またはほぼ自由な電子模型)を銅に適用している時点で、4s電子を相手にしている事になります。

この回答への補足

問題文は単に「Cuの4s電子の電子密度を計算より推定しなさい」だけで、条件などはありません。

>銅の場合、Fermiエネルギーが4sバンド上にありますので、自由電子模型(またはほぼ自由な電子模型)を銅に適用している時点で、4s電子を相手にしている事になります。

その4s電子の密度が分かりません。バンド構造で考えれば、4sバンド上で電子が詰まっているバンドの厚さにエネルギーE(=kT)を掛けてあげれば電気伝導に寄与する電子数みたいに求まるものなのでしょうか?

補足日時:2014/10/20 18:11
    • good
    • 0

>イマイチ分からないのは「4s電子の」の部分です。

どうすれば電子密度を4s軌道の電子だけに絞って計算する事ができるのでしょうか。

非常にまともな質問だと思います、その体積は「知り様が無い」
ご存じの通り、軌道の形状、大きさ、分布などを知りうる原子は「水素類似型元素の原子」だけであり、
他の多電子元素の電子軌道は「解析的な方法」では多体問題になるので解けない。
ここ迄はシュレーディンガー描像で話してきました。
解くならハイゼンベルク描像か、リチャード・ファインマン描像になるが、後者は単一素粒子の挙動は
得意だが、完全な原子の描写は苦手。
だが多分、ハイゼンベルク描像の世界を扱う大学は、京大物理の大学院だけだろうし、出た答えに
一体意味があるのか否かあなたには解らないだろう。
だから教授に「これは私の理解を超えます、解法を教えて下さい」と言うべきで、もし、その説明に穴が
有ったら、絨毯爆撃で問い詰めるべきです。

この回答への補足

そうですか、ハイゼンベルグまで出てくるような難解なものだったんですね。
物理学はやはり難しいです

補足日時:2014/10/20 18:14
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q単位体積(1m^3)当たりに占める原子の個数

こんにちは、

ある金属(金、銀、銅)の単位体積に、何個の原子があるのか?どうやって計算すれば良いのでしょうか?

Aベストアンサー

単位体積の重さを計算します。それは密度から計算できるはずです。
それをグラム単位で表し、それを原子量で割れば、その原子の物質量(モル数)が計算できます。
1モルの原子数は約0.02x10^23個(アボガドロ数)ですので、それを上記の物質量にかければ原子数が計算できます。

Q電子密度?電荷密度?

電荷密度の単位って(C/V)だとずっと思っていたんですが、最近(electron/V)って表記されているものをみつけたんですが、これって電子密度ではないでしょうか?
口頭でしゃべるときは「電荷密度(electron/V)」とかいてあっても電子密度と言っていた方がいるんですが、それは単純な表記ミスってことでしょうか?

ちょっと分かりにくい質問かもしれませんが、要するに電荷密度と電子密度の単位表記が一定でないのはなぜなのか?ということなんです。


どなたか教えていただけないでしょうか。よろしくお願いします。

Aベストアンサー

#2です。
解りました。
#1さんもいってる通り単位の取り方の問題で・・・

 MKSA系は微視的な事象を扱うには適さない面があります。
 電子数個の分布を表すのにCを使うと10^(-19)オーダーになってしまいますね。だから電子の数個を扱うため、基準に「電子の個数」を取ったのでしょう。それなら許されると思います。
 この場合、口頭なら「電子の電荷を単位として」と断るとか、図表とかに使うのだったらその図表の欄外に1electron/m^3=1.6×10^(-19)C/m^3とか書いておけば文句は無いでしょう。発表者が「電子の個数で・・・」とか言ってませんでしたか?

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q固体のエネルギーバンド理論

Auの自由電子密度はn=5.90×10^22cm^-3である。このとき、金属の自由電子モデルを用いて、フェルミエネルギー、フェルミ波数、フェルミ速度およびフェルミ温度を求めよ。

フェルミエネルギーE_F=h^2/2m(3π^2n)^2/3
hはhバーでhバー=1.05×10^-34Js
最初のフェルミエネルギーの答えが5.49eVなのですがどうやっても答えが出ません
わたしはmのところを79にしたんですがそれはあっているでしょうか?
あと単位のエレクトロンボルトに変換するために1.60×10^-19Jで割ったりもしました。
それで出てきた答えが4.436×10^-14です。
nの単位をmに直したりもしました。
わからないので誰か教えてください。
最初のフェルミエネルギーが解けないのでその後のも全部できない状態なのです;;

Aベストアンサー

まずFermiエネルギーとは何ぞや、ということですが、本サイトでも過去にいくつか議論がありますので「フェルミ」「フェルミ準位」などのキーワードで検索してみるとよいと思います。

固体の中で電子の取りうる状態はいくつかのとびとびの状態(エネルギー準位)に限られます。座席のようなものだと思って下さい。そのエネルギーには高い低いがありますが、電子はだいたい低い方から順に詰めていきます。ただし低い準位にも多少の空席が生じますし、高い準位でも多少は占有されています。だいたいどの辺まで詰まっているかを表す指標がFermi準位です。(例えば、http://oshiete1.goo.ne.jp/kotaeru.php3?q=206257などをご参考に)

さて数字の代入のお話ですが、m=79は二つの意味で誤りがあります。mに代入するのは原子番号ではなく具体的な質量であること、そして代入する質量は原子1個の質量でなく電子の質量であることです。(m=79では、物理量としてそもそも質量の次元を持ちません!)
また長さの単位がmかcmか自信のないまま適当に代入しているとしたらちょっとこれは問題です。基本的に式に数字を代入する時は単位を揃えるのが基本です(*)。[m]と[cm]を混在させたまま計算すると訳が分からなくなりますよ。

Fermiエネルギーの式をちゃんと書くと以下のようになります。ここでhは、質問文中と同様にhバーです。
E_F=(h^2/2m)((3π^2)×n)^(2/3)
代入してみましょう。
(1.05×10^(-34)[Js])^2 ÷ 2×9.1×10^(-31)[kg] ×{3×3.14^2 ×5.90×10^28 [m^(-3)]}^(2/3)
電子の質量が9.1×10^(-31) [kg]であること、自由電子密度を[m]単位に書き直したことに注意して下さい。すべてSI有理単位で数字を入れていますから、結果もSI有理単位系でのエネルギー単位、すなわち[J]で得られます。
多少厄介ですが根気よく計算すると
8.78×10^(-19) [J]
くらいになるはずです。
ジュール単位から電子ボルト単位への変換はmahiro19さんのご理解の通りで結構です。1.602×10^(-19)で割ればよく、5.49 [eV]が得られます。

波数kへの変換は、エネルギーをEとして
E=(h^2 k^2)/2m
で与えられます。ここもhはhバーです。mは電子の質量です。
代入の練習として、Eを[J]、mを[kg]単位で入れてみて下さい。波数は[m^(-1)]の単位で出てくることになります。

速度vは
E=(1/2) mv^2
で求めてみて下さい。mは同様に[kg]単位で入れてみて下さい。vは[m/s]の単位で出てくるはずです。

温度Tへの変換はエネルギーをEとして
E=kT
として求められます。ここにkはBoltzmann定数(1.38×10^(-23) [J/K])です。Tは絶対温度(単位はケルビン、[K])であることに注意してください。

--------
*ある程度慣れてきて計算の見通しが立つようになれば、単位を混在させたままで計算することはできますが、そこまで分かっていないのだとしたら愚直であっても、最初に単位を揃えて計算する方法が結局は確実で早道です。

まずFermiエネルギーとは何ぞや、ということですが、本サイトでも過去にいくつか議論がありますので「フェルミ」「フェルミ準位」などのキーワードで検索してみるとよいと思います。

固体の中で電子の取りうる状態はいくつかのとびとびの状態(エネルギー準位)に限られます。座席のようなものだと思って下さい。そのエネルギーには高い低いがありますが、電子はだいたい低い方から順に詰めていきます。ただし低い準位にも多少の空席が生じますし、高い準位でも多少は占有されています。だいたいどの辺まで詰まっ...続きを読む

Q共振回路の応用例

共振回路はどのようなことに応用されていますか?

携帯電話やラジオに使われていると聞くことはありますが、どのように応用されているか教えてください。


携帯やラジオ以外でも使われているもの、どのようにおうようされているか 教えてください。

Aベストアンサー

ラジオ等に使われる共振回路はインダクタンス(L)を持つコイルと、静電容量(C)を持つコンデンサで構成される回路で、きっかけの電力が与えられるとLとCの値に応じた周期で振動する電力を保つ回路です。

その周期(秒)はLとCの値によって決まります。
周期=2×π×√(L×C)で表されます。

またこれを1秒間の振動数(ヘルツ)であらわすと
周波数(f)=1/(2×π×√(L×C))となります。(中学校の時、無線の試験のため、この公式を覚えました)

以下は小学生の頃、工作で作りました。ゲルマラジオの回路です。バリコン(可変コンデンサ)とコイルでLC共振回路が入っています。
http://www.k5.dion.ne.jp/~radio77/guide/kouzou.htm


分かり易い応用例としては、以下のようなものがあります。
ビデオレンタル店等の万引き防止タグは、薄いシートにLC共振回路が描かれたものが商品に張り付けてあります。
店の出口のゲートでは、この回路に共振する周波数の電波が放出されていて、この共振回路の共振を検出すると警報音がなる仕組みになっています。

自動車のスマートキー(鍵をささずに、スマートキーを持っているだけでエンジンを掛けることが出来る)も、キー内部にLC共振回路が内蔵されています。自動車からある周波数の電波が発せられていて、キー内部のLC共振回路が「発電」します。
キーは発電した電力を使って、コード(暗号)を自動車に向けて電波で送ります。暗号が正しければ、車はエンジンをかけることを許可します。(持ち歩くキー自体は必ずしも電池は必要でないところがポイントです)

実際の応用例は、無線機など電波を使う機器だけでなく、普通のオーディオ機器にも有線電話にも、テレビにもあらゆるところで使われていますので、興味があれば勉強してみてください。

ラジオ等に使われる共振回路はインダクタンス(L)を持つコイルと、静電容量(C)を持つコンデンサで構成される回路で、きっかけの電力が与えられるとLとCの値に応じた周期で振動する電力を保つ回路です。

その周期(秒)はLとCの値によって決まります。
周期=2×π×√(L×C)で表されます。

またこれを1秒間の振動数(ヘルツ)であらわすと
周波数(f)=1/(2×π×√(L×C))となります。(中学校の時、無線の試験のため、この公式を覚えました)

以下は小学生の頃、工作で作りました。ゲルマラジオの回路で...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

QCuの原子量

周期表ではCuの原子量は63.546となっていますが、molを求めるときなどは、63 、64どちらを使うのでしょうか?それとも63.5とするのでしょうか?

Aベストアンサー

runnrt_h_aさん、こんにちは。

Cuは周期表では原子量は確かに63.546となっていますね。
Cu1モル=63.546g、ということでいいのではないでしょうか。

問題によっては、
Na=23とする。Cu=63.5とする。
などのように指示が出ていると思いますから、それに従えばいいと思います。

有効数字2桁まで求めよ、という感じでしたら、
Cu=63.546
のまま計算して、あとで四捨五入すればいいでしょう。

Qフェルミエネルギー

フェルミエネルギーってどんなエネルギーのことですか??物理辞典とかを読んでも難しくてよくわかりません。わかりやすく説明おねがいします!

Aベストアンサー

長々と失礼致します。


電子のように
・粒子一つ一つに区別は出来ない
・一つの状態には一つの粒子しかは入れない
という性質の粒子を フェルミ粒子(ex陽子)といいます。

このフェルミ粒子は、フェルミディラック分布にしたがった確立で存在します。

f(ε)=1/[exp{(εーεF)/kT}+1]  ・・・☆
     f:フェルミ関数(運動エネルギーεをもつ粒子の存在確立)
     ε:粒子の運動エネルギー
     εF:フェルミエネルギー
     k:定数
     T:温度

☆式のεにフェルミエネルギーを入れると、粒子の存在確立が1/2になりますね。
ここで、温度T=0(絶対温度)の時を考えてみると、
運動エネルギーが、フェルミエネルギー以下の場合はf=1、フェルミエネルギー以上ではf=0となります。

ちなみに、粒子一つ一つを区別する事は出来ないけれど、一つの状態にいくつも粒子が入る事が出来るものをボーズ粒子(ex.光子)といいます。


電子はパウリの排他原理(排他律)にしたがい、一つの準位には一つの電子しか入れません。
下の準位から一つ一つ電子が埋まってゆき、その電子が詰まっている最大の準位がフェルミレベルで、このエネルギーをフェルミエネルギーといいます。
金属の場合、フェルミエネルギーは、荷電子帯の中にありますが、半導体の場合は荷電子帯と伝導帯の間にあります。
真性半導体の場合、荷電子帯の天井と伝導体の底辺のちょうど真ん中にあります。

長々と失礼致します。


電子のように
・粒子一つ一つに区別は出来ない
・一つの状態には一つの粒子しかは入れない
という性質の粒子を フェルミ粒子(ex陽子)といいます。

このフェルミ粒子は、フェルミディラック分布にしたがった確立で存在します。

f(ε)=1/[exp{(εーεF)/kT}+1]  ・・・☆
     f:フェルミ関数(運動エネルギーεをもつ粒子の存在確立)
     ε:粒子の運動エネルギー
     εF:フェルミエネルギー
     k:定数
     T:温度

...続きを読む

Q音響モード・光学モード

フォノンの光学モード、音響モードの図の見方がわかりません。わかりやすく説明できる方がいらっしゃったらお願いします。

ここ↓
http://cl.rikkyo.ne.jp/cl/2004/internet/kouki/rigaku/hirayama/041222/12_22.html
のページの下から1/4あたりにある図みたいなのです。

Aベストアンサー

わかりやすい説明かどうかわかりませんが、
おっしゃているのは、フォノンの振動数(またはエネルギー)を縦軸、波数を横軸にとった図のことでしょうか?
こういう図を(フォノンの)分散関係と呼びます。

たぶん高校で波(音波)において、
(波の振動数ν)=(波の速度c)/(波長λ)という関係(以下、式1と呼ぶ)を習ったと思いますが、それを拡張したものです。これを波数kを使って書くと
ω=2πν=ckです。これは分散関係の図で直線で与えられますが、フォノンの分散関係は直線にはなっていません。なぜでしょうか。
 固体の振動を例にとると、式1はλを小さくしていくと問題が発生します。つまり式1がどんなに小さな波長にでも成立するとすると問題が発生します。波長が0.01nmになったらどうなります。原子の間隔は0.1nmのオーダーなので、それよりも狭い領域に波の振動が含まれるとはどういうことでしょう。そういう波はありえないというか意味がないのです。
つまり式1は波長が極端に短いところでは変更を受けるわけです。

音響モードと光学モードとは、分散関係でkを小さくしていった場合、振動数がゼロになるのが音響モードで、有限の値をとるのが光学モードです。

結晶の単位胞に原子が1個しかない結晶では、音響モードしかありません。光学モードが現れるためには、単位胞に2個以上の原子が含まれる必要があります。

それではなぜ「音響」モードと呼ぶのでしょう。
音響モードは実は充分kが小さい領域ではω=ckという線形な関係に漸近します。つまり式1です。式1が表すのは音波だったため、「音響」モードと呼ばれます。

それではなぜ「光学」モードと呼ぶのでしょう。単位胞に原子が2つ含まれる場合はイオン結晶でよく起こり、片方が+、もう片方が-に帯電しています。
それが質問者の示したwebの図にもあるように互い違いに振動するモードが光学モードにあたり、+と-の電荷が互い違いに振動すると電気分極が振動し、光(格子振動の場合は赤外光)と相互作用します。

光学モードをもつ結晶に赤外光を当てると、光学モードの振動数に相当する赤外光が吸収されます。「光」で観測できるから「光学」モードです。

フォノンの光学モードと音響モードの話は、どんな固体物理の教科書にも載っていると思いますので、以上の説明の手がかりに一度じっくり読んでみられたらいかがでしょうか?

わかりやすい説明かどうかわかりませんが、
おっしゃているのは、フォノンの振動数(またはエネルギー)を縦軸、波数を横軸にとった図のことでしょうか?
こういう図を(フォノンの)分散関係と呼びます。

たぶん高校で波(音波)において、
(波の振動数ν)=(波の速度c)/(波長λ)という関係(以下、式1と呼ぶ)を習ったと思いますが、それを拡張したものです。これを波数kを使って書くと
ω=2πν=ckです。これは分散関係の図で直線で与えられますが、フォノンの分散関係は直線にはなっていませ...続きを読む


人気Q&Aランキング

おすすめ情報