No.1ベストアンサー
- 回答日時:
物理学者の siegmund です.
∫∫_A(x^2+y^2)dxdy A:(x^2/4)+y^2≦1
ですね.
A は楕円の内部ということですよね.
変数変換は妥当ですが,ヤコビアンが違います.
x = 2r cosθ,y = r sinθ
ですから,ヤコビアンは r dr dθでなくて
2r dr dθです.
cos^2θやsin^2θの積分は倍角公式を使うのが常套手段です.
対称性に注目するなら,
はじめに x/2 = u とでもおいて,
そのあと前の質問
https://oshiete.goo.ne.jp/qa/9036440.html
の回答後半で述べたようにすれば角度積分が不要です.
お試しください.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 微分積分の二重積分についての問題がわからないです。 1 2022/07/17 02:36
- 数学 次の関数を微分せよ y=sin^4 x cos^4 x という問題で自分は積の微分法で微分して y' 3 2023/05/17 20:38
- 数学 写真の(3)の問題の解説の1行目についてですが、 ①なぜ、曲線Kの囲む図形は、cos(-θ)と表せる 5 2023/01/26 00:36
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 数学 写真の赤線部にについてですが、 どのように展開すれば「cos²5x-cos²3x」から 「sin²3 3 2023/02/13 13:38
- 数学 高校生です。 この問題が解説がないため合ってるか分かりません。 この回答であってますか? 回答 g( 3 2023/01/24 14:05
- 数学 回答者どもがなかなか答えられないようなので、考えてみました。 ∫[0,π/2]log(sinx)/( 4 2022/08/31 16:30
- 物理学 物理の問題です。 1 2022/12/20 23:04
- 数学 高校生です。 この問題の解説がなくてこの解き方で合っているでしょうか? g(x,y)=0のとき x^ 2 2023/01/25 17:28
- 物理学 分布定数回路の問題について 1 2022/06/12 11:36
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
人生最悪の忘れ物
今までの人生での「最悪の忘れ物」を教えてください。 私の「最悪の忘れ物」は「財布」です。
-
モテ期を経験した方いらっしゃいますか?
一生に一度はモテ期があるといいますが、みなさんどうですか? いまがそう! という方も、「思い返せばこの頃だったなぁ」という方も、よかったら教えて下さい。
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
楕円の変数変換
数学
-
2重積分の変数変換について
数学
-
ヤコビアンの定義について
数学
-
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
高1 数学 sin cos tan の場所っ...
-
e^iθの大きさ
-
3辺の比率が3:4:5である直...
-
sin2xの微分について
-
画像のように、マイナスをsinの...
-
θが鈍角のとき、sinθ=4分の3の...
-
tanθ=2分の1のときの sinθとcos...
-
複素数表示をフェーザ表示で表...
-
教えてください!!
-
数学 2次曲線(楕円)の傾きの計...
-
sinθ-√3cosθをrsin(θ+α)の形...
-
sinθ+cosθ=1/3のとき、次の式の...
-
cos2分のπ= cos−2分のπ= sin2...
-
∫sin^2x/cos^3xdxの解き方が...
-
式の導出過程を
-
sinθ +cosθ =1/3 (0°≦θ≦ 180°)...
-
【数学】cosθ=0.8|sinθ=0.6の答...
-
分からない問題
-
楕円の単位法線ベクトルがわか...
-
4辺と1つの対角線の長さが分か...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^iθの大きさ
-
3辺の比率が3:4:5である直...
-
tanθ=2分の1のときの sinθとcos...
-
sin2xの微分について
-
画像のように、マイナスをsinの...
-
高1 数学 sin cos tan の場所っ...
-
次の三角比を45°以下の角の三角...
-
教えてください!!
-
加法定理の応用問題でcosα=√1-s...
-
sinθ+cosθ=1/3のとき、次の式の...
-
急いでます! θが鈍角で、sinθ...
-
θが鈍角のとき、sinθ=4分の3の...
-
sin(ωt+θ) のラプラス変換
-
数学Iで分からない問題があります
-
二つの円の重なっている部分の面積
-
数学 2次曲線(楕円)の傾きの計...
-
複素数表示をフェーザ表示で表...
-
三角関数の合成
-
式の導出過程を
-
sin三乗Θ+cos三乗Θの値は?
おすすめ情報