角運動量の方向には、物理的にどのような意味があるのですか?

このQ&Aに関連する最新のQ&A

A 回答 (5件)

すでにsiegmundさんが回答されてますね。



> もし角運動量の向きが正と負逆だったら何か問題があるんですか?

角運動量の定義は、先にも書いたとおりベクトル積r×Pとなっていますから、その向きはベクトル積の定義から生じるということになります。
その向きの定義は、”慣習的に”右ねじの進む向きとされただけです。
問題が生じるのは、siegmundさんのおっしゃるように、我々の知識における定義の変更の方でしょう。
物理の世界ではベクトル積で表される式がいっぱいあるわけですから、角運動量の向きを逆にすると、ベクトル積の定義を変えなければならないので・・・えらいことになっちゃいそう^^;

ただこのベクトル積によって表された角運動量ベクトルは、実際の運動平面の”法線”を必ず示すことになり、その大きさ|r×P|も、回転運動に関する量であることから、角運動量ベクトルを解析することで、その運動について議論できる、という仕組みになります。
ちなみにrの取り方は任意であるため、r×P だけでは回転軸そのものを表すことはできません。
    • good
    • 0

どうやら,ryumu さんのかかれている意図の質問のようですね.



> 人工的に作られたベクトルの方向というのは何に対応しているのでしょうか?

回転軸の方向です.

> もし角運動量の向きが正と負逆だったら何か問題があるんですか?

なにも問題はありません.どう定義するかだけの問題です.
ただし,逆に定義し直すと,
世界中の角運動量(だけじゃすまないですが)関係のすべての本,機械,プログラム,
など全部変更しないといけません.

今の選び方はもともと xyz の直角座標系のとり方に準拠しています.






└────x

と座標軸をとって,z軸は画面垂直手前向きです.
向こう向きにとって悪い理由はありませんが,習慣でいまさら変えられないでしょう.

---------------

簡単に平面上の円運動だとしますと,
運動の方向はどんどん変わっていきますから,
運動方向(or 運動量)で円運動を表すのはうまくない.
運動の平面ということならよさそうですね.
その平面上の1次独立な2つのベクトルが平面を規定しますが
(同じことですが,平面上の相交わる2直線,と言ってもよい),
2つのベクトルの選び方は無数にあります.
かわりに,垂線を使えば,ただ1つのベクトルで面の向きが指定できます.

角運動量は,擬ベクトル(or 軸性ベクトル)と呼ばれる範疇のベクトルで,
座標軸の回転に関しては普通のベクトル(極性ベクトル)と同様の変換をしますが,
座標反転(x → -x,etc)の関しては符号を変えません.
普通のベクトルはもちろん符号を変えますね.
    • good
    • 0

yohei123さんの言いたいこと、何となくわかります。



たとえば運動量だったら、その向きは運動の向きなのに、
角運動量の向きって、運動の向きと垂直だけど、それがいったい運動とどういった関係が・・??
ってことじゃないですか?

角運動量の向きは、回転軸の向きということは、すでにseigmundさんが答えられていますね。
では、角運動量の向きはなぜ回転軸の向きになるのか??

たとえば、位置r=(x,y,z)にある物体が、運動量P=(px,py,pz)をもって、xy平面上を運動(回転である必要はない)をしているとすると(r,Pはすべてベクトルです)、その角運動量は、

 Lxy=x・py-y・px

と表せて(これはスカラー量)、それはベクトル積r×Pの”z成分”に他ならない、ということになります。

ベクトル積というのは、ある二つのベクトルから、それらに垂直なベクトルを”人工的に”作り出すものです。
ベクトル積によってつくられるベクトルを疑似ベクトルといって、ベクトルと同じ性質をもっています。
角運動量の場合、ベクトル積を使うことで、(偶然?)運動平面に対しての垂線方向、つまり回転軸方向とその大きさを対応できた・・・ってことではないでしょうかね?

この回答への補足

人工的に作られたベクトルの方向というのは何に対応しているのでしょうか?
もし角運動量の向きが正と負逆だったら何か問題があるんですか?

補足日時:2001/06/18 00:01
    • good
    • 0

No.1の方と同様質問の意図が今ひとつ分かりません。


次のような話で参考になるでしょうか?

昔、子供たちが、コマで遊んでいたときに、5歳の幼稚園児が巧みな技で相手のコマを倒していました。その子供はどこでその技を身につけたか分かりません。

コマが向こう側に倒れたときに、こちらから、コマを当てたら、相手のコマは向こうに倒れると思いますが、実際は、コマはぐるぐる頭が回るだけで倒れません(歳差運動)。この子供は、右横に傾いたときに、自分のコマを当てるといとも簡単に倒れるではありませんか?このとき、左に傾いたときに、当てると、そのコマは起きてしまいます。倒されるコマの回転の向きが関係します。逆回転と左に傾いたときに当てないとダメです。

そのコマの角運動量の方向はz方向だとし、横から当てたとき、それはコマを回転させようとしますので、そのモーメントはx方向とするとそのコマはy軸方向に力のモーメントを受けます。この力のモーメントがコマを倒してします。

実は、この技、角運動量の向き(sense)が関係しているのです。コマの場合、方向(direction)は上下ですが、向きは「下向き」「上向き」が考えられます。

昔、バイクのエンジンが回転軸が前後になるようなものがありました。これは聞いた話ですが、右と左にカーブするときは、角運動量の向きのために、運転の感覚が微妙に違うそうです。そのためか知りませんが、現在は、このようにエンジンをつけてあるバイクはないのではないでしょうか?(確認はしていません)

上の現象を実感したければ、宇宙ゴマというもので実験して下さい。その原理を応用したものに、モーメンタム・ジャイロでロケットの制御をしていました。今では、もっと精度の良い光センサーを使っているようです。船の羅針盤もジャイロではなかったでしょうか?

gooのトップページで、「ジャイロ」という項目で検索すると沢山ヒットします。参考にして下さい。
    • good
    • 0

どういう回答をもとめておられるのか,ちょっとわからないところもありますが...



角運動量の方向は回転の軸の方向です.
例えば,xy 平面上の円運動だったら,回転軸はz軸ですね.
z軸の正負の方向の選び方がありますが,
回転と同じ方向に右ねじを回したときに進む方向を選んでいます.
つまり,反時計回り場合はz軸の正の方向,
もし時計回りならz軸の負の方向です.
    • good
    • 0
この回答へのお礼

早速の回答ありがとうございます。質問わかりにくくてすみませんでした。

お礼日時:2001/06/17 23:52

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q五角形の最大面積

すべての辺が長さ1の凸五角形で、ある2本の対角線が垂直になるとき、
この五角形の最大面積はいくらか。

面積が最大になるときの五角形は、正方形に正三角形をつけた形になると
おもうので、(√3+4)/4になりましたが、正しいでしょうか。

Aベストアンサー

ご質問の通り、(√3+4)/4で正しいです。

二本の対角線を形作る四点を五角形から選ぶことになりますが
その四点を結ぶと、対角線が垂直で交わることから一辺の長さが
1のひし形になります。となるとこの五角形はひし形に正三角形を
つけた形になります。(すべての辺の長さが1なので)

ひし形の面積が最大になるのはひし形が正方形の場合なので
この五角形の最大面積は
正方形の面積=1
正三角形の面積=√3/4
の和です。

Q光にも軌道角運動量とスピン角運動量の区別があるのですか

水素型原子の電子軌道の持つ角運動量は軌道角運動量とスピン角運動量の区別があることは勉強しました。電磁波(光)にも軌道とスピン角運動量が存在するのでしょうか。
 
また完全な平面波波進行方向の角運動量を持たないと言う記述がありましたが、一方平面電磁波は球面波展開ができると言うことも教科書に書かれていました。ひとつひとつの球面波は球ハンケルh(l)とY(l、m)の変数分離で記述できることも勉強しましたが、円偏波が量子力学で言うスピン角運動量に対応するのでしょうか。

きちんとわかってないのでお詳しい方に教えて頂ければ幸いです。よろしくお願いします。

Aベストアンサー

最近は読む気にもならないような質問が多いのですが、これは良いご質問だと思います。光子の軌道角運動量がないのは原子核の周りを回っている状態をつくれないからではありません。例えばブラックホールの近辺とかなら球対称場での光子の束縛状態が作れる可能性があると思いますが、そのような場合にも軌道角運動量はない(というか軌道角運動量の演算子が定義されない)と思います。完全な平面波が角運動量を持たないことはありません。質量のある粒子の中心力場内での散乱を考える時、平面波を球面波(軌道角運動量の固有状態)に展開するのが常套手段であることは量子力学の教科書を見ればすぐに分かることです。運動量の固有状態は角運動量の固有状態ではないと言うだけで角運動量がないわけではありません。

Q五角形の相似

正五角形の五本の対角線が作る内部の五角形はもとの五角形と相似であることは
証明なしで解答に用いてもよろしいのでしょうか?

Aベストアンサー

正五角形と正五角形が相似であることは、
自明ですが、
内側の五角形が正五角形であることには、
理由が必要です。
「対称性より」程度の説明で
構わないと思いますが。

Q歳差運動(コマ)における角運動量の方向について

基本的な事と思いますが、質問をさせていただきます。

角運動量を“L”とし、位置ベクトルを“r”、運動量ベクトルを“mv”としたときに、L=r×mvとなると思います。その方向は、外積として定義され、“r”と“mv”の両方に垂直な方向と認識しております。

しかし、教科書に掲載されているコマの歳差運動の解説によると、「こまの支点がx-y平面上で動かないときに、角運動量の方向は重心の位置ベクトルを“rG”の方向と一致とする」と記載されています。そもそも、角運動量の式によれば、L=rG×mvとなり、“rG”にも垂直で、方向は一致しないのではないかと思っています。その解説をしてもらえると助かります。

さらに、支点に作用する抗力を“R”とし、その垂直成分を“RL”とした場合には、こまの重力“Mg”と等しく偶力が形成されると思います。その偶力モーメントは“N=rG×Mg”であり、トルクの方向は“rG”“g”に垂直であることは理解できるのですが、そもそもモーメント(トルク)は角運動量の時間的な変化量と認識しており、モーメントと角運動量は同じ方向になるのではないかと思うのですが、併せて解説をいただけると助かります。

質問に、前提条件等の記載漏れがあるかもしれませんし、大変基礎的な質問かもしれませんが、解説のほどよろしくお願いします。

基本的な事と思いますが、質問をさせていただきます。

角運動量を“L”とし、位置ベクトルを“r”、運動量ベクトルを“mv”としたときに、L=r×mvとなると思います。その方向は、外積として定義され、“r”と“mv”の両方に垂直な方向と認識しております。

しかし、教科書に掲載されているコマの歳差運動の解説によると、「こまの支点がx-y平面上で動かないときに、角運動量の方向は重心の位置ベクトルを“rG”の方向と一致とする」と記載されています。そもそも、角運動量の式によれば、L=rG×mvとなり、“rG”にも垂...続きを読む

Aベストアンサー

#3への「補足」に対して

>『Li と Lj は・・・

図を描いてお考えになるとよいと思いますが、ここでは式で説明します。

i と j を結ぶ直線と回転軸との交点の位置ベクトルを p とすると、回転軸に垂直なベクトル q を使って
ri = p + q
rj = p - q
と書くことができます。これらを使うと
Li = ri×(mi vi)
  = mi(p + q)×vi
  = mi(p×vi + q×vi)、 (1)
Lj = rj×(mj vj)
  = mj(p - q)×vj
  = mj(p×vj - q×vj)
となりますが、Lj の式で mj = mi、vj = -vi なので
Lj = mi(-p×vi + q×vi)  (2)
です。
(1)式と(2)式を比べると、p を含む項は大きさが同じで符号が逆(つまりベクトルの方向が逆)です。これに対して、q を含む項はまったく同じです。よって、Li と Lj を加えると、p を含む項は打ち消し合い、q を含む項は2倍になります。式で書くと
Li + Lj = 2 mi q×vi
です。ここで、q は回転軸に垂直で、vi は回転軸と q の両方に垂直ですから、q×vi は回転軸に平行です。回転軸に垂直な成分は p×vi に含まれていたのですが、すでに述べましたように、和をとる過程で消えてしまったわけです。

>“v”とは

#3の(3),(4)式における v は、仮に vi が i によらず一定であるとした場合のその一定の速度のことですから、回転しているコマの場合には対応するものはありません。

#3への「補足」に対して

>『Li と Lj は・・・

図を描いてお考えになるとよいと思いますが、ここでは式で説明します。

i と j を結ぶ直線と回転軸との交点の位置ベクトルを p とすると、回転軸に垂直なベクトル q を使って
ri = p + q
rj = p - q
と書くことができます。これらを使うと
Li = ri×(mi vi)
  = mi(p + q)×vi
  = mi(p×vi + q×vi)、 (1)
Lj = rj×(mj vj)
  = mj(p - q)×vj
  = mj(p×vj - q×vj)
となりますが、Lj の式で mj = mi、vj = -vi なので
Lj = mi(-p×vi + q×vi)  (2)
です...続きを読む

Q星(太陽以外の恒星)はどうして五角形(星型)なのか?

子供の絵や漫画、アニメ等で星を描くと五角形ですよね
恒星(普通の星)だけでなく流星まで星型ですよね
実際は円形なのに(流星は棒状)
なぜ星は五角形の星型なのですか?
天文学にルーツがあるのですか?
(大昔の天文学者が五角形に感じたとか)

Aベストアンサー

太陽と月は勿論のこと、惑星の金星や火星、木星も土星も、肉眼で大きさを感じることができます。
それに対して、遠くにある恒星は、太陽より大きな星もありますが、遠過ぎて人間の肉眼では大きさを感じられず「点」になります。その光は、地球の大気の影響を受けて、星が瞬いて見えたりします。
ですので、No.1の方のおっしゃる通り、明るく光る恒星は、星の光が中心から放射状に広がって感じられ、それを星印に例えたのだと思います。
五角形になったのは、一筆書きで書けるというのも理由の一つではないでしょうか?

Q力学についての質問です。 偏角方向への初速がなく、動径方向には万有引力だけ力がある運動方程式d^2r

力学についての質問です。

偏角方向への初速がなく、動径方向には万有引力だけ力がある運動方程式d^2r/dt^2の解rが知りたく、下の紙のように解いたのですが、積分ができません。
どなたか答えを教えてください。

できれば下の置換の仕方で答えが解きたいです。
よろしくお願いします。

Aベストアンサー

左辺, dr の下にあるのは
√(2k/r + C1)
でしょうか? もしそうなら, 1/r = X とおいても積分は単純ではないと思います.

Maxima によると, いったん
Y = √(2k/r + C1)
と置くとよさそうな感じ. まあこれでもまだまだ処理が続きますが.

Qサッカーボール問題、五角形と六角形の数

サッカーボールは次の条件で作られる。
(1)正五角形と正六角形の多面体を球状にしたものである。
(2)各々の五角形の周りは六角形に囲まれており、六角形の周りは五角形と六角形に交互に囲まれている。
(3)オイラーの多面体の定理によれば、面、頂点、辺の数の関係に「面の数 + 頂点の数 = 辺の数 + 2」の関係がある。

これから、五角形と六角形の数を求めるにはどうすればよいのでしょうか。

Aベストアンサー

五角形の数をm、六角形の数をnとするとばらばらにした時の

辺の数  5m+6n
面の数  m+n
頂点の数 5m+6n

このうち、辺は2つが合わさって立体ができており、
頂点は3つが合わさってます。
(90度以上の角度の図形は4つ以上はあわせることができません。また、2個以下なら
頂点になりません)
これを多面体の定理に入れればmが求まります。
また、五角形が六角形に囲まれているならそのすべての辺は六角形と共有です。
そしてそれは六角形の全ての辺の半分に当たります。((2)の記述から)

Q量子力学において運動量を微分演算子に代える物理的意味

量子力学をきちんと物理的,数学的に理解したいので,独学で量子力学を勉強しています.学部時代は量子力学の授業がなかったこともあり,正直分からないことだらけで不思議に思うことがたくさんあります.

そのうちの一つとして,ある原子内の電子群を考え,ハミルトニアンHを持つ系だとすると,波動関数Ψの絶対値の二乗(存在確率)で存在する原子内にある一つの電子は,あるエネルギ準位(固有値)εしか取り得ないという考え方をシュレディンガー方程式
HΨ=εΨ
で表される固有値問題に帰着するということをとりあえず納得したとすると,線型代数学で出てくる固有値問題
Ax↑=λx↑
のように「ある固有ベクトルx↑に対してある固有値λが決まる」
ということと似ているのでなんとなく分かります.

波動方程式からシュレディンガー方程式を導出していくこともなんとなく分かりました.分からないことは,シュレディンガー方程式の導出として,ハミルトニアンを波動関数に作用させ,ハミルトニアン中に含まれる運動量を微分演算子に代えれば,シュレディンガー方程式になっているということです.この方法は,結果として成り立つだけで,後付けくさいなあと感じました.

過去にも同じような質問をされていた方
http://oshiete1.goo.ne.jp/qa587812.html
がいましたので見てみると,運動量を微分演算子に代えるのは数学的には導けるようですが,その導く過程が物理的には分かりにくいと感じました.

量子力学を勉強する前に基礎知識が不十分なのもあるとおもいます.
なので,量子力学を勉強する前に習得するべき学問は何かと,どの順番で勉強すれば効率がよいかも教えていただきたいです.

(1)量子力学において,運動量を微分演算子に代えることの物理的意味は?もっと一般的に,その他の物理量(角運動量,スピン角運動量など)を演算子に代えることの物理的意味は?
(2)量子力学を勉強する前に習得するべき学問は何かと,それらをどの順番で勉強すれば効率がよいか?
です.長くなりましたが,よろしくお願いいたします.

量子力学をきちんと物理的,数学的に理解したいので,独学で量子力学を勉強しています.学部時代は量子力学の授業がなかったこともあり,正直分からないことだらけで不思議に思うことがたくさんあります.

そのうちの一つとして,ある原子内の電子群を考え,ハミルトニアンHを持つ系だとすると,波動関数Ψの絶対値の二乗(存在確率)で存在する原子内にある一つの電子は,あるエネルギ準位(固有値)εしか取り得ないという考え方をシュレディンガー方程式
HΨ=εΨ
で表される固有値問題に帰着するということを...続きを読む

Aベストアンサー

行列形式を学習されていないのでしたら、ぜひ先ほどの解析力学の本を
よんだ後に、
「現代の量子力学 上下」J.J.サクライ 吉岡書店
を読まれることをお薦めします。

http://www.amazon.co.jp/%E7%8F%BE%E4%BB%A3%E3%81%AE%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6%E3%80%88%E4%B8%8A%E3%80%89-%E7%89%A9%E7%90%86%E5%AD%A6%E5%8F%A2%E6%9B%B8-%E6%A1%9C%E4%BA%95-%E7%B4%94/dp/4842702222

そうすれば、シュレーディンガー方程式が天下りではなく、きわめて
自然な流れの中で導出されます。
この流れで学習すれば、化学系や工学系でよくある授業の形式である
ド・ブロイの物質波->シュレーディンガー方程式
という流れで感じる天下りによるもやもやが解消されます。
光や電子の粒子性と波動性の二面性というものもい後者の流れでは
うやむやのままですが、前者の流れでは明確な形で説明されます。

行列形式を学習されていないのでしたら、ぜひ先ほどの解析力学の本を
よんだ後に、
「現代の量子力学 上下」J.J.サクライ 吉岡書店
を読まれることをお薦めします。

http://www.amazon.co.jp/%E7%8F%BE%E4%BB%A3%E3%81%AE%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6%E3%80%88%E4%B8%8A%E3%80%89-%E7%89%A9%E7%90%86%E5%AD%A6%E5%8F%A2%E6%9B%B8-%E6%A1%9C%E4%BA%95-%E7%B4%94/dp/4842702222

そうすれば、シュレーディンガー方程式が天下りではなく、きわめて
自然な流れの中で導出されます。
この流れで学...続きを読む

Q「五角形のもの」何がある?・・・ありそうなのに意外と見つからないので、教えて下さい!

三角形も四角形も、いやというほど身近に満ち溢れているのに、五角形となると意外に見つかりません。

「野球のホームベース」は、すぐに思いついたんですが・・・

皆さん、五角形のものをご存知でしたら、教えて下さい!

Aベストアンサー

こんにちは

先に回答がありますが、花とかヒトデとか、生き物には結構ありますね

その他だと…
「使いかけの消しゴム」って五角形になりがちですよね
「イラストに描かれる家」の形も五角形ではないでしょうか?
「昔、医者でくれてた粉薬の包み」今では見かけませんねぇ、昔は五角形に折った紙に包んでありました。
「から揚げクン用の紙パック」コンビニ(ローソンだっけ?)のメニューです
「牛乳パック」ある角度から見れば五角形です

ぱっと思いつくのはこの程度です

Q流体の運動量と角運動量について

流体機械の問題で、2つの面の間で運動量と角運動量は等しいということを
利用して解く問題をやっています。
しかし、質点の運動量と角運動量は、簡単な公式がありますが、
流体の運動量と角運動量がわかりません。
流体の運動量と角運動量の求め方を教えてください。

Aベストアンサー

状況がよく分からないので基本的なことですみませんが、
ある面を単位時間に通過する流体について考えます。

平均流速v、密度ρ、ある面の面積Aならば、
単位時間にそこを通過する流体の体積(体積流量)はvAなので、
質量(質量流量)はρvA、これに流速をかけたものρv^2Aが運動量になります。
角運動量も同じ考えで求めることが出来ます。

併せまして、流体力学の簡単な本をご参考にされることをオススメ致します。


人気Q&Aランキング

おすすめ情報