
No.2ベストアンサー
- 回答日時:
△ABCで、余弦定理より
cosA=(6^2+5^2-4^2/(2・6・5)=(36+25-16)/(2・6・5)=45/(2・6・5)=3/4
sinA=√(1-cos^2A)=√{1-(3/4)^2}=√{1-(9/16)}=√(7/16)=(√7)/4
△ABC=(1/2)・6・5・sinA=(1/2)・6・5・(√7)/4=(15√7)/4
PA=PB=PC=4 より
Pから底面に下した垂線の足をHとすると、Hは△ABCの外心になる。
△ABCで、正弦定理より
2AH=4/sinA=4/{(√7)/4}=16/√7
AH=8/√7
△PAHで、三平方の定理より
PH=√[4^2-{8/(√7)}^2]=√{16-(64/7)}=√(48/7)=(4√3)/√7
したがって、求める体積Vは
V=(1/3)・△ABC・PH=(1/3)・(15√7)/4・(4√3)/√7=5√3
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 ゼロベクトルになる理由を教えてください 2 2023/01/30 15:48
- 数学 三角形ABCの辺BCを4 : 3に内分する点をTとし、点Tを接点として辺BCに接する円が点Aで直線A 3 2023/02/12 21:03
- 数学 数学の質問です。 abcはそれぞれ三角形の一辺である。 a²+b²+c²−ab-bc−ca=0が成り 4 2022/10/29 12:57
- 数学 0 a b a b 0 A= b 0 c B= b 0 c c a 0 0 c a を使って | a 2 2023/06/08 08:48
- 数学 数学の質問です。 △ABCにおいて, ∠Aの二等分線が BC と交わる点をRとする。 辺BC, CA 2 2023/07/13 23:58
- 数学 解き方をくわしく教えてください 8 2022/10/14 23:57
- 数学 ベクトル解析 ガウスの定理 問題 (1,0,0)、(0,1,0)、(0,0,1)、(0,0,0)を頂 7 2023/07/18 21:43
- 数学 右の図で、BCの長さを四捨五入して、 小数第1位まで求めなさい。 図は三角形ABCで、∠Aが50度、 3 2022/07/28 01:17
- 数学 内積の問題で質問です。 Qこの問題は図にベクトルの向きが書かれてないのですが、どうやって足し算・引き 6 2022/05/24 18:36
- 数学 数学 1 2023/04/10 17:19
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報