
A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
x^(-1)の微分は -x^(-2) は宜しいでしょうか?
これを使って合成関数の微分で計算することもできます。
y=f(u)、u=g(x)の時
dy/dx=df/du・dg/dx
なので、y=2/u, g=x-1 とおくと
dy/dt=df/du・dg/dx=-2u^(-2)・1
=-2(x-1)^(-2)
No.2
- 回答日時:
簡単にするため
y = x - 1
とおけばよいでしょう。
こうおけば
f(x) = 2/(x - 1)
は
f(y) = 2/y = 2 y^(-1)
と書けます。
そうすれば
df/dx = df/dy * dy/dx
という計算ができます。
右辺は、おのおの
df/dy = -2 y^(-2)
dy/dx = 1
ですから、
df/dx = -2 y^(-2)
= -2 (x - 1)^(-2)
= -2/(x - 1)^2
No.1
- 回答日時:
(f(x)/g(x))'=(f'xg-g'xf)/(g^2)を用いればよい。
{2/(x-1)}'ではf(x)=2,g(x)=x-1より、f'=0,g'=1から、{2/(x-1)}'=-2/(x-1)^2
あるいは、{2/(x-1)}'=2x{(x-1)^(-1)}'=2x(-1)x(x-1)^(-1-1)=(-2)/(x-1)^2としても同様の結果となる。
つまり、{(x-1)^n}'=n・(x-1)^(n-1)を使っただけです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 微分について教えてください 放物線y=x^2のx=1における微分係数を定義に従って求め、その点におけ 5 2023/04/16 15:38
- 数学 微分方程式の非線形2階微分方程式が解けないので教えてください!特殊解とその見つけ方だけでもお願いしま 4 2022/11/21 23:35
- 数学 【数学ⅲ】三角関数と合成関数の微分について 4 2022/07/07 21:44
- 物理学 量子力学 球面調和関数 導出 方位角成分 微分方程式の解 2 2022/07/02 13:40
- 数学 微分積分の極限についての問題がわからないです。 1 2023/01/08 13:57
- 数学 凹関数について 1 2022/11/07 22:07
- 統計学 微分の問題です。お詳しい方教えてください。 3 2023/02/10 21:31
- 数学 微分方程式の問題 2 2023/07/26 14:19
- 数学 子供が引算の仕方が理解できないのですが、どう説明すれば理解できるか教えてください。 理解できないのは 5 2022/11/07 18:32
- 数学 f'(x)=g'(x)+2xsin(1/x)-cos(1/x) (x≠0) =g'(0) 2番は f 4 2023/04/19 00:47
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
積分で1/x^2 はどうなるのでし...
-
∫1/√x dx 積分せよ 教えて下さい
-
積分 Xの-2乗を積分するとどう...
-
e^-2xの積分
-
(1+sinx)/sin2xの積分
-
dx^2を無視するのはなぜ?
-
合っているか確認してください...
-
次の初期値問題をピカールの逐...
-
x−1分の2の微分の仕方を教えて...
-
広義積分の値
-
∫r/(a^2+r^2)^3/2drの計算の解...
-
項の右端につく縦棒の意味を教...
-
微積分 dの意味
-
常微分方程式
-
∮a^xdxこれを公式的に導いてほ...
-
x/(a^2+x^2)の積分について
-
dy/dxについて
-
陰関数の極値
-
2階変数係数線形微分方程式
-
関数方程式 未知関数 No.2
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
積分で1/x^2 はどうなるのでし...
-
e^-2xの積分
-
積分 Xの-2乗を積分するとどう...
-
∫1/√x dx 積分せよ 教えて下さい
-
∫1/(x^2+1)^2 の不定積分がわ...
-
微積分 dの意味
-
項の右端につく縦棒の意味を教...
-
フーリエ級数の問題で、f(x)は...
-
∫e^cos(x) dx の計算
-
1/X^2の積分ってlogX^2ですか?
-
【数学Ⅱ・Ⅲ】微分の問題
-
2次微分の変数変換
-
x/(a^2+x^2)の積分について
-
exp(-ax^2)*cosx の証明
-
(dy/dx)+y=xの微分方程式はどの...
-
e^-1/Tの積分
-
確率密度関数をf(x)=1-|x-1|と...
-
dx^2を無視するのはなぜ?
-
dy/dxについて
-
フーリエ変換の問題について
おすすめ情報