数学の問題で質問があります。(2)の問題でどうして焦点が3/8と出るのでしょうかどうして8/3ではないのでしょうか?詳しい説明お願いします。

「数学の問題で質問があります。(2)の問題」の質問画像

A 回答 (2件)

点(X,Y) と準線の距離は,|X+p|


焦点との距離は,√{(X−p)^2+Y^2 }
これらが等しいことの必要十分条件は,
(X+p)^2=(X−p)^2+Y^2
である。これを整理すると,
Y^2=4pX となる。

pは、焦点で、この関数では、x座標になるから、y^2=(3/2)x から
4p=3/2 ∴ p=(3/2)/4=3/(2・4)=3/8

放物線の定義から、焦点、準線を理解してくださいね!
できたら、y=あx^2+いx+う
と、x^2=4py
と比較しながら、理解を深めて欲しい!
    • good
    • 1
この回答へのお礼

あー!!なるほど!理解できました!ありがとうございます!

お礼日時:2017/07/15 00:26

焦点の定義は解っていますか。


y²=ax の焦点は、(a/4,0) ですよね。
ですから、(y+2)²=(3/2)xー2/3 の焦点は
{(1/4)×(3/2)、ー2)} になりますから (3/8,ー2) ですね。
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-6 この計算のどこがおかしいですか?

今高校数学2 複素数と二次方程式 の範囲を勉強しているのですが、
√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6  
この式のどこが間違っているのか分かりません!教えて下さい!
ご回答宜しくお願いします!

Aベストアンサー

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」とがOKなことと
「負の数の根号」×「負の数の根号」の“計算”が
今まで通りOKなことは違うということです。

つまり、根号の中身が負のときには
√a × √b = √ab 
とは計算してはいけないということ。

数学Ⅰの教科書を見てください。
性質★ a>0 b>0 のとき √a × √b = √ab
と書いてありますよね!

√6=√(-2)(-3)=√(-2)√(-3)=√2i√3i=-√6 

の計算式では左から2つめの=が誤っていて、それ以外の=は正しいです。
--------------------------------------------------

No4の回答について

> √(ー2)(ー3)=√(ー1)√(2)√(ー1)√(3)=√(ー1)²√2√3=√2√3=√6 だから。 ☆

2つ目の=と3つ目の=が計算の性質★に違反しています。

>この部分を√(ー1)√(2)√(ー1)√(3)=i√(2)i√(3)としてはダメな理由を教えて頂けませんか?
ダメでなく、正しいです。(これは自信を持ってください!)
でも数式☆では2つめの=がNGだから、√6とは等しくありませんね!

質問者は、多分、複素関数の話をしたいのではないと思います。
-----------------------------------------------
>素数という概念内では根号の中身が負になってもいいのかなと
>思っていたのですが、違うのですか?ご回答宜しくお願いします!

複素数まできちんと学んでいますね?
根号の中身は負で大丈夫です。自信をもってください。
これまでは根号の中身が負の数はNGでした。
これからは、根号の中身が負であってもOKです。
-------------------------------------------------
でも「負の数の根号」と...続きを読む

Qルートのはずし方(高校1年生の数学)

ルートを外す場合、添付した画像になる理由をできるだけわかりやすく教えていただけないでしょうか?

宜しくお願い申し上げます。

Aベストアンサー

>できるだけわかりやすく
a= -3 の場合を考えていてください。
√(-3)² = √9 = 3 ですよね。
3 はこの場合 -a だから。

Q高校の数学の複素数平面って存在価値あるのですか? 別に習わなくても良くね?

高校の数学の複素数平面って存在価値あるのですか?
別に習わなくても良くね?

Aベストアンサー

複素数平面以外は、存在価値を見て解ているのですか?

三角関数、指数関数、対数なんかも同じでしょ。
ましてや、微分、積分なんて、いつ使う?

何にもしないあなたには、宝の持ちぐされです。

Qa-bが6の倍数の時 aとbを6で割ったときの余りは等しい というのが書いてあったのですが どのよう

a-bが6の倍数の時
aとbを6で割ったときの余りは等しい

というのが書いてあったのですが
どのように証明できますか?

Aベストアンサー

文字変数が表しているのは全て整数です。
a-bが6の倍数ですから
a-b=6n (1)
と表せます。

bを6で割った余りをrとすると
b=6q+r (2)
と表せます。

(1)から
a=b+6n
この式に(2)を代入すると
a=6q+r+6n=6(n+q)+r
となり、これはaを6で割るとn+qで余りがrであることを意味します。

Q数学の実数の問題です。

こんばんは、ただいま数学の先生からの難題に頭を抱えています。
その答えを見つけるにあたり下記の解、またその証明方法が知りたいです。
中学生でもわかる証明法だといいです。

[2,3]と[2,10]において、どちらの区間がより多い実数を有しているか。

どちらも無限に続くので参っています。
ヒントだけでもよろしいので教えて下さいませんか。

*自分なりに一応考えてみました。
[2,3]の実数をx(∞)とする(仮定)       ・・・①
[2,10]の実数は[2,3]の8倍なので8x      ・・・②
①と②より、  x<8x
故に [2,3]<[2,10]
はじめはこれが正解だと思っていたのですが、見直したところ、どうにも安直な証明法なのでここに質問することにしました。

Aベストアンサー

濃度という意味で言えば同じですね。

小数点以下の桁数が限られていればあなたが考えた通りなのですが、
実際には桁数も無限なので、無限の実数を含むことになります。
無限なのだから当然個数で比較することはできません。
ですので、別の考え方が必要でしょう。


区間 [2,3] から、実数xを一つ取ります。
ここで変換式 8(x-2)+2 を適用すると
どんなxに対しても区間 [2,10] の実数になります。

逆に、区間 [2,10] から、実数yを一つ取り
変換式 (1/8)(y-2)+2 を適用すると
どんなyに対しても区間 [2,3] の実数になります。

つまり、二つの区間内の実数が一対一で変換できるので、
個数は同じだけある。
というのが答えになります。

大学数学ではこれを濃度が同じとしています。
イメージとしては「長さが違ったとしても同じ一本の線(の区間)」
なので一対一に対応できるのは当たり前、といったところでしょうか。

Qこの問題の解き方を教えてください

この問題の解き方を教えてください

Aベストアンサー

関数のxの部分にxの定義域の両端とx=0の値をそれぞれ代入して求める。

Qこの問題の途中式を教えてください。 答えは x=3±√2 だそうです。 式 2(x-3)²=4

この問題の途中式を教えてください。
答えは
x=3±√2
だそうです。


2(x-3)²=4

Aベストアンサー

まず、両辺を2で割って、
(x-3)^2=2
これから、
x-3=±√2
となり、
x=3±√2

Q-n+nについてなんですが、具体的な数字を文字に入れて計算して答えを出したとしても、それがすべての数

-n+nについてなんですが、具体的な数字を文字に入れて計算して答えを出したとしても、それがすべての数字に言えるかどうかなんて確かめるのは不可能ですが、文字の計算はどう考えるべきなんですか?
確かめるのは無理だから、下の写真のように覚えるのがいいですか?

Aベストアンサー

すべての数に対して、0を掛けると0になることは理解できますか?
それが理解できるなら、普通に 3x-3x を計算するだけです。

これは、ひとつには想像力の問題でもあるので、「すべての数に対して確認する必要がある」という発想だと、数学は苦労しますよ。

Q高校数学整数問題 至急

xの2次方程式 x^2-mnx+m+n=0 (m,nは自然数) で2つの解がともに整数となるのはいくつあるか

Aベストアンサー

整数解をx=a,bとする。但し、a≦bと仮定。

解と係数の関係から
a+b=mn …①
ab=m+n …②

m,nが自然数なので
ab≧2 …③

ここでトリッキーだけど、(m-1)(n-1)=mn-(m+n)+1=a+b-ab+1
=-(a-1)(b-1)+2 …④

m,nは自然数なので、m-1≧0かつn-1≧0。

∴0≦(m-1)(n-1)=-(a-1)(b-1)+2

∴(a-1)(b-1)≦2 …⑤

③かつ⑤を解く。

1.a>0(の整数)の場合
a≧1なので、③よりb≧2/a 。
従って、⑤を満たす(a,b)は下記i~iiiのいずれか。

i (a=1)かつ(b≧2)
ii (a=2)かつ(3≧b≧1)
iii (a=3)かつ(2≧b≧1)

iの場合、④より(m-1)(n-1)=2となるので、
(m,n)=(3,2)(2,3)となるけど、①②より
1+b=mn=6
b=m+n=5
となるので、b=5に決まり。

iiの場合、
a≦bを満たす解は(a,b)=(2,2)(2,3)。
(a,b)=(2,2)の時、④より(m-1)(n-1)=1となるので、
(m,n)=(2,2)。

一方、(a,b)=(2,3)の時、④より(m-1)(n-1)=0となるので
m=1またはn=1。
また、①②より
5=mn
6=m+n
なので、(m,n)=(5,1)(1,5)。

iiiの場合、
a≦bを満たす解は無し。

2.a=0の場合
③を満たさないので不適。

3.a<0(の整数)の場合
a≦-1(a-1≦-2)なので、③よりb≦2/a <0。
∴b-1 <-1。
∴(a-1)(b-1)>2
これは⑤を満たさないので不適。

以上より、
(m,n)=(5,1)(3,2)(2,2)(2,3)(1,5)

整数解をx=a,bとする。但し、a≦bと仮定。

解と係数の関係から
a+b=mn …①
ab=m+n …②

m,nが自然数なので
ab≧2 …③

ここでトリッキーだけど、(m-1)(n-1)=mn-(m+n)+1=a+b-ab+1
=-(a-1)(b-1)+2 …④

m,nは自然数なので、m-1≧0かつn-1≧0。

∴0≦(m-1)(n-1)=-(a-1)(b-1)+2

∴(a-1)(b-1)≦2 …⑤

③かつ⑤を解く。

1.a>0(の整数)の場合
a≧1なので、③よりb≧2/a 。
従って、⑤を満たす(a,b)は下記i~iiiのいずれか。

i (a=1)かつ(b≧2)
ii (a=2)かつ(3≧b≧1)
iii (a=3)かつ(2≧b≧1)

iの場合、④より(m-1)(n-1)=2となるので...続きを読む

Q算数の問題です アルコールが1Lあります。水が1Lあります。合わせて何Lですか? という問題があった

算数の問題です
アルコールが1Lあります。水が1Lあります。合わせて何Lですか?
という問題があったとします。
答えは
2Lですか?
わかりません。ですか?
それとも原子密度と分子間力を厳密に計算し、1.9…Lですか?

Aベストアンサー

算数の問題ですか。
ならば、結論的に云えば、不適切な問題です。

物理(又は化学)の問題ならば、
水とアルコールを混ぜれば、容積が減る事は習った筈。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報