
No.2ベストアンサー
- 回答日時:
ベクトルの矢印は省略
OEは図を描くまでもなく分かるはず
内分点の公式に当てはめて
OE=(2OB+1OC)/(1+2)=(1/3)(2b+c)
同様に内分公式を利用で
OM=(1/2)(OD+OE)
公式利用をせずとも|OA|:|OD|=3:2から
OD=(2/3)OA=(2/3)aであることはわかるから
OM=(1/2)(OD+OE)
=(1/2){(2/3)a+(1/3)(2b+c)}
=(1/3)a+(1/3)b+(1/6)c
PはOMの延長線上にあるから実数kを用いて
OP=kOMと表せるので
OP=k{(1/3)a+(1/3)b+(1/6)c}=(k/3)a+(k/3)b+(k/6)c
ここで最重要ポイント!「A,B,Cが一直線上にないとき点Pが平面ABC上にある⇔OP=sOA+tOB+uOC s+t+u=1となる実数が存在する」
により (k/3)+(k/3)+(k/6)=1
k=6/5
ゆえに OP=(2/5)a+(2/5)b+(1/5)c
No.1
- 回答日時:
図を描くことができますか?
この問題はイメージできないと解けないと思ってください。
(図を描かずに答えれられる人は、頭の中でイメージが出来ている)
まずは四角形OABCの立体図を描く。
そして、OAを2:1、BCを1:2、DEを1:1、して考えてみましょう。
面倒なんで、底辺をAを直角とした直角二等辺三角形。
Aの真上にABと同じ長さのOAを想定してみましょう。
まずは、こういった事をサラッとできるようになるように意識することから始めると良いです。
・・・
「理屈なんてどうでも良いから答えだけ教えろ!俺さまの成果として提出するwww」
ということなら、諦めたほうが良いと思います。
分からない事は「分からない」と伝えることは大切です。
(それをしてこなかったから置いてきぼりなんです)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 中学校 OA=OB=OC=AB=AC=1、 ∠BOC=90°となる四面体OABCの 辺OA上に点DをOD:D 4 2022/10/11 10:07
- 数学 数学の質問です。 △OAB の辺 OA を3:1 に外分する点をP, 辺 OB を 2:1 に内分す 1 2023/07/03 14:06
- 高校 問題文「四面体OABCにおいて、△ABCの重心をG、辺OAの中点をMとし、OGと△MBCの交点をHと 3 2023/01/02 23:35
- 数学 数学(三角比) 四面体OABCについて、「OA=1」「OB=√2」「OC=2」「OA⊥OB」「OB⊥ 1 2023/02/13 21:22
- 数学 ベクトルと図形の問題で、 △OABの、辺OA、OB上にそれぞれ内分点P、Qがあって(比は分かっている 2 2022/08/01 10:55
- 数学 数学の質問です。 ABCの内接円の半径が8であり, 辺BCがその接点により長さ 16 と12に分けら 2 2023/07/05 18:04
- 高校 ーこのグラフにおいてー (問)Mを通る直線Lによって、平行四辺形OABCを2つの部分に分ける。この2 3 2022/04/10 14:24
- 数学 三角形ABCの辺BCを4 : 3に内分する点をTとし、点Tを接点として辺BCに接する円が点Aで直線A 3 2023/02/12 21:03
- 数学 数学の問題の解き方を教えて下さい。 ∠Aが直角の直角三角形ABCで、∠Bの二等分線と辺ACとの交点を 7 2022/05/06 21:52
- 数学 数学 解答三行目の →OC=−(→OA+→OB) −(→OC)=→OA+→OB にして計算していって 2 2023/08/09 13:48
このQ&Aを見た人はこんなQ&Aも見ています
今、見られている記事はコレ!
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
-
大麻の使用罪がなかった理由や法改正での変更点、他国との違いを弁護士が解説
ドイツで2024年4月に大麻が合法化され、その2ヶ月後にサッカーEURO2024が行われた。その際、ドイツ警察は大会運営における治安維持の一つの方針として「アルコールを飲んでいるグループと、大麻を吸っているグループ...
-
ピンとくる人とこない人の違いは?直感を鍛える方法を心理コンサルタントに聞いた!
根拠はないがなんとなくそう感じる……。そんな「直感がした」という経験がある人は少なくないだろう。ただ直感は目には見えず、具体的な説明が難しいこともあるため、その正体は理解しにくい。「教えて!goo」にも「...
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
問) 四面体OABCの辺OAを1:2に内...
-
<f,g> distributionは内積?
-
ベクルトなどの問題
-
3次元空間内での線分の交差判...
-
外積、内積に使われる記号の読...
-
ベクトルと軌跡 青チャート
-
ヒルベルト空間について
-
4次元ミンコフスキー空間で時...
-
この問題で解説では法線ベクト...
-
「(((a0)/2)・1, 1) …(a0)/2の1...
-
数学の問題です 四面体OABCにお...
-
数B ベクトルについて質問です...
-
外積マークの×は何て読んでます...
-
mm3とμl
-
(a+b)(a2-ab+b2)=a3+b3の途中式
-
pdf上に描画した図形が印刷され...
-
定規で正三角形
-
縮小率の計算方法を教えてください
-
1cc・1ml・1mgは同じ量ですか?
-
a(b二乗−c二乗)+b(c二乗−a二乗...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報