
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
No.1 です。
#1 では計算で定量的に求めましたが、下記のように「定性的に」推論してもよいと思います。
この推論を正しくできる自信があれば、#1 のようにいちいち定量的に比較してみる必要はないと思います。
(1) 「ア」のように、1つめの茶碗に移動する熱量は「A」の方が大きい。
ただし、お茶の量が多いので、Aの方が温度は高い。
(2) 1つ目の茶碗から2つ目の茶碗に移すときに、
Aの1つ目の茶碗の温度は、Bの1つ目の茶碗よりも高いまま残る。つまり1つ目の茶碗に残る熱量はAの方が大きい。
(3) 従って、最終的に2つ目の茶碗とその中のお茶の持つ熱量は、Bの方が大きい。
よって、Bの方がお茶の温度は高い。
No.1
- 回答日時:
ふつう「温度変化」を考えるときには、「放熱」「熱の逃げ方」をF83:F107考えるんですけどね。
立体の体積は、例えば「球」を考えれば、
・表面積は半径の2乗に比例
・体積は半径の3乗に比例(質量は体積に比例する)
します。
そういった「質量に対して表面積が大きい」ものが「冷めやすい」ことになります。
ただし、ご質問の問題の場合には、空気中への放熱は考えず、「湯と茶碗」だけの熱のやり取りを考えるようですね。
あなたのいうとおり、Aの方が「温度の高い湯の量が多い」分だけ「湯→茶碗」への熱の移動が大きいです。
よって
Qa > Qb
後半は、きちんと温度変化を計算してみないといけないでしょう。
水の量を M [kg]、比熱を w [J/(kg・K)]、最初の温度を Tw [K]、湯飲みの質量を m [kg]、比熱を c [J/(kg・K)]、最初の温度を Tc [K]、としましょう。
Aの1つめの整定温度を Ta1 とすると、移動した熱量 Qa1 は
Qa1 = M・w・(Tw - Ta1) = m・c・(Ta1 - Tc) ①
①より
(m・c + M・w)Ta1 = M・w・Tw + m・c・Tc
→ Ta1 = (M・w・Tw + m・c・Tc)/(m・c + M・w) ②
Aの2つめの整定温度を Ta2 とすると、移動した熱量 Qa2 は
Qa2 = M・w・(Ta1 - Ta2) = m・c・(Ta2 - Tc)
→ (m・c + M・w)Ta2 = M・w・Ta1 + m・c・Tc
→ Ta2 = (M・w・Ta1 + m・c・Tc)/(m・c + M・w) ③
②を使って
Ta2 = [M・w・(M・w・Tw + m・c・Tc)/(m・c + M・w) + m・c・Tc]/(m・c + M・w)
= [(M・w)^2・Tw + M・w・m・c・Tc + (m・c)^2・Tc + M・w・m・c・Tc]/(m・c + M・w)^2
= [(M・w)^2・Tw + (m・c + 2M・w)m・c・Tc]/(m・c + M・w)^2
これがお茶の最終温度なので
Ta = [(M・w)^2・Tw + (m・c + 2M・w)m・c・Tc]/(m・c + M・w)^2 ④
Bの1つめの整定温度を Tb1 とすると、移動した熱量 Qb1 は
Qb1 = (M/2)・w・(Tw - Tb1) × 2 = m・c・(Tb1 - Tc) × 2
= M・w・(Tw - Tb1) = 2m・c・(Tb1 - Tc) ⑤
⑤より
(2m・c + M・w)Tb1 = M・w・Tw + 2m・c・Tc
→ Tb1 = (M・w・Tw + 2m・c・Tc)/(2m・c + M・w)
Bの2つめの整定温度を Tb2 とすると、移動した熱量 Qb2 は
Qb2 = (M/2)・w・(Tb1 - Tb2) = m・c・(Tb2 - Tb1) + (M/2)・w・(Tb2 - Tb1)
→ m・c・(Tb2 - Tb1) + M・w・(Tb2 - Tb1) = 0
→ (m・c + M・w)・(Tb2 - Tb1) = 0
m・c + M・w > 0 なので、これが成り立つのは
Tb1 = Tb2
これがお茶の最終温度なので
Tb = (M・w・Tw + 2m・c・Tc)/(2m・c + M・w) ⑥
Ta と Tb の大きさを比べるために差をとってみれば
Ta - Tb = [(M・w)^2・Tw + (m・c + 2M・w)m・c・Tc]/(m・c + M・w)^2 - (M・w・Tw + 2m・c・Tc)/(2m・c + M・w)
= [(M・w)^2・Tw + (m・c + 2M・w)m・c・Tc](2m・c + M・w) - (M・w・Tw + 2m・c・Tc)(m・c + M・w)^2] / [(m・c + M・w)^2・(2m・c + M・w)]
= {(M・w)^2・Tw + (m・c + 2M・w)m・c・Tc](2m・c + M・w) - (M・w・Tw + 2m・c・Tc)[(m・c)^2 + 2M・w・m・c + (M・w)^2]} / [(m・c + M・w)^2・(2m・c + M・w)]
= {2(M・w)^2・m・cTw + 2(m・c + 2M・w)(m・c)^2・Tc + (M・w)^3・Tw + (m・c + 2M・w)M・w・m・c・Tc] - (M・w・Tw + 2m・c・Tc)[M・w・(m・c)^2・Tw + 2(M・w)^2・m・c・Tw + (M・w)^3・Tw + 2(m・c)^3・Tc + 4M・w・(m・c)^2・Tc + 2(M・w)^2・m・c・Tc]} / [(m・c + M・w)^2・(2m・c + M・w)]
= {M・w・(m・c)^2・(Tc - Tw)} / [(m・c + M・w)^2・(2m・c + M・w)]
< 0
(Tw > Tc なので)
よって
Ta < Tb
以上より、選択肢では③でしょうか。
あとは、「補足」に「追記」で書いた「温度の下がり方」ですが、あなたが書いているように
Q = m・c・ΔT
なので、最初は「温度差 ΔT」が大きいので熱の移動量が大きく、湯の温度低下と茶碗の温度上昇で「温度差 ΔT」が小さくなっていくと熱の移動量も小さくなっていく、という関係で徐々に温度変化が小さくなっていきます。
なので、グラフにすると「曲線」になります。
熱いものが冷めていくのは速いですが、ぬるいものが冷たくなる(室温になる)のには結構時間がかかります。
それをグラフにするとお示しのもののようになります。「変化率(接線の傾き)がだんだん小さくなってくる」という「指数関数」の曲線です。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- うつ病 軽度うつの漢方薬 8 2022/04/06 14:55
- 飲み物・水・お茶 お茶を飲むことについて 一日中お茶飲んでるのってまずいですか? 最近よく飲み物を飲むようになって、1 3 2022/12/26 13:43
- 子供 中2男子の性欲を抑える方法について 5 2022/07/13 04:05
- 浮気・不倫(恋愛相談) 心と体の性別が同じでは無い人達 5 2023/03/16 16:32
- 数学 数学Aについて分からない問題があります。 答えは載っているので分かりますが、 解き方がわかりません。 5 2023/02/03 18:58
- 飲み物・水・お茶 はちみつと、アスコルビン酸粉末(ビタミンC)を入れ、熱湯で溶いて飲んだのですけれど、はちみつレモンの 2 2023/01/14 19:24
- 数学 時々、回答者の見識に疑念を抱いてしまうんです。私だって本当は皆様のことを疑いたくはありません。しかし 2 2022/11/27 12:23
- 眼・耳鼻咽喉の病気 分かる方教えてください。 副鼻腔炎になってしまい、喉も痛く咳もひどいです。病院で抗生剤や痰切りの他に 2 2023/03/27 21:07
- 数学 重複組合せで 区別のつかない球5個をA,B,C 3つの箱に入れる。 どの箱にも少なくとも1個の球が入 2 2022/05/21 15:50
- その他(地域情報・旅行・お出掛け) 極楽湯(銭湯?)について 3 2022/04/09 17:53
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
配向テンソルについて
-
なぜ写真①の場合と②の場合で自...
-
物理
-
大学院進学祝いは必要でしょうか?
-
大学4年生です。 卒業に124単位...
-
送付状の書き方:お世話になっ...
-
卒論提出せずに卒業してしまい...
-
大学のゼミの1回目のの講義で5...
-
研究生の履歴書の書き方
-
大学のゼミの発表が嫌です。 そ...
-
大学生です。7000~10000字のレ...
-
大卒者の大学再入学
-
大学院は一条校?
-
学位論文手渡し時の添え状
-
大学院(理系)留学について
-
名工大と、豊橋技科大の違いに...
-
レポートって??
-
ゼミ必修ではないのでゼミを辞...
-
博士課程に進んだ彼氏・・将来...
-
学会発表経験なしについて(理...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報
問題です
問題です
追記です
次の問題で、熱量と時間の関係性のグラフが求められたのですが、答えは①なんですが、どうして曲線を描くんですか?
問題です