No.6ベストアンサー
- 回答日時:
こんにちは。
質問の仕方はかなりざっくりとした文章ですが、なかなか高度なご質問ですね。
質問者さんのレベルがわからず 私も知識の足りない状況ですが、次のような回答はご参考になるでしょうか。
まず、この種の問題は、「数学的に解く」方法と、「シミュレーションで確認する」方法とがあり、前者ができればとても 「エレガント」なのですが、けっこう難しいので現代のその道のプロは後者の方法をとるでしょう。
それにしても、基本的な考え方は共通ですので、ひとまず確認しておきましょう。 なお、今回の問題では、通常は、特に強い力を加えると「根元が折れる」と思われます。(根元において最も力が加わり変形が大きい。柔らかいパイプを曲げる場合とちょっと異なる)
① 円を圧縮して楕円への変形
まず、根元の部分の円の変形だけを考えます。輪切りにした円形パイプを両側から押して楕円にした状態ですね。 この時、円周のそれぞれの場所には「曲げ応力」がかかります。圧縮される2点は外側に開く力が、その90度ずれた点は内側に折る力がかかります。 数学的には「周の長さが不変の状態で円の方程式から楕円の方程式への変換」になりますね。
シミュレーション(有限要素)的には、例えば「正100角形の向かい合う2つの頂点に圧縮を加えて各頂点の角度が変わる」状態ですね。 力の大きさと変形度合いをイメージする上でも後者のほうが考えやすく、圧縮の力について、各頂点における曲げベクトルの成分が出ますので、材料の曲げ強度とバランスした角度が出ますね。(これを全部(といっても基本は1/4週分だけ)足せば、圧縮方向に縮まる幅やその90度ずれた部分の膨らむ幅も算出できるでしょう)
② 曲げから圧縮力の算出
曲げ応力により円形断面を圧縮する力を計算します。モデルは正確にすればきりがないですが、次のような方法があります。
パイプ曲げの外側だけに着目すると、埋めたパイプの最深部が支点、最上部(支点から4m)が力点、地面部分(根元における曲げの内側。支点から50cm)が作用点として、作用点では土と背面に挟まれて円を圧縮するモデルとすると、圧縮力は最上部で押している力の力の8倍がかかります。
③ 応力分散を考える
これが一番面倒ですね。上記のモデルは、根元の円がすべての力を引き受けるモデルです。実際には、根元の上下の部分も材料の強度に応じて圧縮力を引き受けてくれます(①でいえば幅の広い輪切り)。
パイプ全体が大きく「しなる」ことがないとして、根元での大きな変形は距離が離れるごとに小さな変形になっていきます(ご質問のポイントはこれかと)が、これも例えば1cm幅毎のシミュレーション計算をしていくことになるでしょう。
なお、土の中では周囲の土が円の変形を防止してくれるため、例えばコンクリートに埋めたなら断面が一切変形しないため根元の耐力はほとんど無限とみなすことができ、折れる(断面がつぶれる)ときは地面から少し上の部分で折れます。 (コンクリート地面のモデルでは②のテコのモデルを補正したモデルが必要かもしれませんが)
ついでに、このような場合に試し使用できそうなシミュレーションのソフトとして、下記を紹介しておきましょう(XFEM) http://jikosoft.com/software/xfem/index.html
(私はかなり前に、流体でしか使用したことがないですが、今回のような問題にも利用できそうにも見えます。)
いかがでしょうか。 お役に立てば幸いです。
ありがとうございます。
実際には、風車の塔で計算するので、
根元はコンクリートであり、
地下に埋めこんである鉄筋のようなもので固定されているので、
根元の部分は変形しないと考えています。
変形はしないが、折れる事はあります。
(塔が根元の近くで折れた事故がありました。)
風車の塔の場合、地上40mの部分では、
ブレードが真上に来た時にブレードに掛る揚力ベクトルの方向と、
それに対する直角方向に塔の表面が大きく振動しているとの論文があります。
高さを細かくして、塔の表面の振動を調べた結果は見つかりません。
また、
その方向での、音の指向性も観測されています。
高さに関係した変形の度合いがある程度分かれば数値積分で計算するつもりでした。
振動する塔の表面の部分の面積と振動の速度を求めたいと思っています。
これが計算出来れば、塔の中の気圧変動も計算できると思っています。
有限要素法のプログラムを書きたいとは思っているのですが、
なかなか手が回りません。
サンプルがあるのでプログラムは書けると思っています。
超低周波音の解析プログラムはほぼ完成して、リオン社からの、
0.1Hzでの補正値に関する連絡を待っている所です。
この連絡が来れば、エネルギーの推定が可能になります。
今は、円形の膜の振動の式を纏めています。
何とか、楕円形の膜の振動の話に変えたいのですが、
少し難しいです。
有益な情報、ありがとうございました。
No.5
- 回答日時:
切断面の面積は変わらない
と思いますよ。全体的に延びれば変化するでしょうけれども収縮も加味されるので,,,
証明は どんな方法があるのか?
ってことですよね?
降参しました。
ありがとうございます。
変形した時に、周の長さはあまり変化しないと考えています。
周の長さが一定ならば、
形が円の時が面積が最大になるのは変分法で分かります。
楕円の長径と短径が分かれば円の状態からの面積の変化は計算できます。
と思っているのです。
周の長さも変化するでしょうが、
ビニール管の潰れ方を見ると、
周の長さはあまり変化しないと考えても良いだろう。
考えています。
No.4
- 回答日時:
塩ビ管=塩ビパイプ=水道敷設用のパイプですよね。
独立して垂直に立つことも不可能な素材ですが垂直に立ったとして
1 曲げによるパイプの変形は
例えば水平に輪切りすれば当然楕円になります。
2 ただし 先端部のパイプの形に変化は出ません(真円です)
3 パイプの曲げをもっと拡大解釈してパイプが円になるまで曲げたと仮定すれば 円の中心点から見た場合の切断面は当然楕円になります。
ありがとうございます。
大体は楕円で良いと思っていますが、
面積の変化を詳細に計算する必要があるので、
調べているのですが、
良い資料が見つかりません。
何か見つかりましたら、教えて下さい。
No.3
- 回答日時:
塩ビ管を曲げるのを工作上の問題としてとらえるなら...
・曲げる部分をバーナーであぶって、柔らかくしてから曲げる
・曲げる内側をくさび上にカットしてから熱をかけて曲げて切れ目を接着剤でふさぐ
・そこで切断してL字管を挿して接着する
ということになります。
物理の問題として解けというなら 塩ビ管の厚さや気温や力のかけ方で変わってきますので、これだけでは回答できませんね。
ありがとうございます。
ビニール管の様子を見ると、円形から楕円のような形に変化すると
予想しています。
すでに研究結果があれば、
それを読んでみるのですが、
見つかりません。
手がかりがありましたら、教えて下さい。
よろしくお願いします。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 電気・ガス・水道 錆びた水道管 お世話になっております。 1年前からリフォーム済中古住宅に住み始めました。 散水栓ボッ 2 2023/04/22 11:52
- リフォーム・リノベーション 汚水枡改修工事の見積額は妥当でしょうか? 2 2022/06/30 09:01
- 電気・ガス・水道業 電柱接地について 3 2023/01/29 19:37
- リフォーム・リノベーション 住宅資材の塩ビ管 2mとか4mて 結構 重さあるのですか? 塩ビ管て、筒状のやつですよね? トイレと 4 2022/06/05 15:28
- リフォーム・リノベーション 親父の 家のトイレの外側に 着いてる、塩ビ管パイプは 4m位の灰色のパイプは、カインズ ホ—ムとかで 4 2022/06/11 06:19
- リフォーム・リノベーション 塩ビ板(PVC板)の硬さについて、メーカーによって違いはありますか? 3 2022/06/08 14:42
- 物理学 波動方程式のようなもの 1 2023/05/13 07:23
- 工学 材料力学(構造力学?)についての問題です。 写真のような形で部材CDの内力を考えます。 C点からの距 1 2022/11/22 00:41
- DIY・エクステリア 内径Φ30mmの鋼管(果樹支柱)を接続するための資材について 5 2023/06/16 10:02
- DIY・エクステリア 自作アクリルケースの「扉」について。 画像の様に下から持ち上げるタイプの扉をつけようと思っていました 4 2022/11/12 21:32
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
「強度」は高い?強い?
-
「強度が弱い」という文はおか...
-
積分定数Cとは一体なんですか?
-
縞鋼板の曲げ応力度・たわみに...
-
sin^2xとsinx^2は同じと聞きま...
-
0°≦θ<2π sinθ-√3cosθ=-1この...
-
合成関数の微分を使う時と、使...
-
次の二次関数をy=a(x-p)²+qの形...
-
真ひずみと公称ひずみの違い
-
数Ⅲ 微分 aを0<a<π/2を満た...
-
微分可能ならば連続ですが、 不...
-
円錐ホッパーの下出口にかかる...
-
ヤング率と引張強度について す...
-
振幅比の計算
-
電気関係の質問なんですが・・・
-
リサージュ図形が回転する理由
-
yの二乗をXで微分したら2y・y' ...
-
なぜこういう式は普通にlogの形...
-
双曲線関数は、実生活上どのよ...
-
コンクリートの圧縮強度試験
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
「強度」は高い?強い?
-
yの二乗をXで微分したら2y・y' ...
-
合成関数の微分を使う時と、使...
-
「強度が弱い」という文はおか...
-
積分定数Cとは一体なんですか?
-
電気関係の質問なんですが・・・
-
縞鋼板の曲げ応力度・たわみに...
-
数Iの問題です cosθ=5分の3の...
-
sin^2xとsinx^2は同じと聞きま...
-
y=logX+1 の微分教えください ...
-
振幅比の計算
-
微分可能ならば連続ですが、 不...
-
1/cos^2θを微分したら何になり...
-
ヤング率と引張強度について す...
-
テーブル構造を支える脚の材料...
-
座屈とたわみの違いを簡潔に教...
-
柿の木は折れやすい
-
双曲線関数は、実生活上どのよ...
-
y=tan^2 x ってどうやって微分...
-
弾塑性解析と弾性解析
おすすめ情報
垂直に立っている塩ビ管の最上部を、
水平方向に押します。
塔の表面の変形に関する手がかりですが、
1,ブレードに掛る揚力ベクトル
https://www.jstage.jst.go.jp/article/jwea/34/4/3 …
2,塔の振動の計測結果
https://www.jstage.jst.go.jp/article/jweasympo/4 …
3,音の指向性
https://www.jstage.jst.go.jp/article/jweasympo/3 …
4,風速の変化とブレードの回転数と音の周波数、音圧、の関係
周波数の変化はビデオでの撮影とWavelet解析で確認しました。
さらに、音圧も回転数に伴って変化します。
このデータは私のHPにあるので、ここで公開すると規約違反になるので公開できません。