R^n (C^n)以外のベクトル空間って他になにがあるのか教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

関数空間が重要です。

応用数学や物理数学には必須です。
R^n はn個の実数の組<r1,r2, ...., rn> を要素とする集合ですが、関数空間は (適当な制限を満たす)関数の集合です。
 いい加減な考え方ですが、<f(r1),f(r2),.....,f(rn)>において、nを無限大にしたもの、と捉えるのでも取りあえず良いでしょう。だからR^nがn次元であるのに対して、関数空間は無限次元です。

R^nに於ける内積は p・q = Σ{i=1~n} (pi qi) ですが、関数空間では内積は(目的に応じて)いろいろ選べます。その内積に対応して様々な関数空間が作れる。最も簡単でよく使う内積は
p・q = ∫ p(t)q(t) dt (ただし積分は t=-∞~∞)
というものです。

R^nにおけるベクトルの足し算は
p+q = <p1+q1, p2+q2,.....,pn+qn>
です。同様に関数空間では
p+q = f (ただしfは任意のtについてf(t) = p(t)+q(t)となる関数)
です。
R^nにおけるベクトルのスカラー倍は
ap = <ap1, ap2,.....,apn>
です。同様に関数空間では
ap = f (ただしfは任意のtについてf(t) = ap(t)となる関数)
です。

R^nの正規直交基底、つまり直交座標系の軸を表す単位ベクトルはたとえば<1,0,....,0>, <0,1,....,0>,...,<0,0,....,1>のn個ですけど、これに限る訳ではなく適当に回転しても良い。2次元の場合<1,0>,<0,1>でなくても<√2/2,√2/2>, <√2/2,-√2/2> でも良い。
要するにn個のベクトル<a1, a2, ..., an>が正規直交基底であるためには、
ai・ai = 1 (i=1,2,...,n)
ai・aj = 0 (i≠jならいつでも)
ということを満たせば良い。
同様に、関数空間の場合の正規直交基底も関数の列<a1,a2,.....>が
ai・ai = 1 (i=1,2,...)
ai・aj = 0 (i≠jならいつでも)
を満たせばよい。でも無限次元ですから、n個(i=1,2,....,n)という訳には行かず、無限個の関数の列が基底になります。このような正規直交基底をなす関数の列を「正規直交関数系」と呼ぶ。チェビシェフの多項式はそのような関数系のひとつです。
 また内積を
p・q = ∫ p(t)q(t) dt (ただし積分は t=0~2π)
とすると、これは周期2πの周期関数からなる関数空間で、
<1, sin θ, cos θ,sin 2θ, cos 2θ, .... >はその直交基底です。

直交関数系、関数解析などをキーワードにして教科書を探せばいっぱい見つかります。
    • good
    • 0

ベクトル空間は一般の体k上で定義されるので、R^n , C^n以外に無数にあります。


ベクトル空間の本を開くと、多くの場合体RまたはCで書かれていますが、
実数体R、複素数体Cの性質に依存する内容は少ないと思います。
ということは一般の体k上で議論しても、ほとんど同じ結果が得られます。
(厳密には標数0の可換体の場合なら同様の議論ができると思います)
RやCで書かれているのは、おそらく学習者にとってイメージがつかみやすいためと、
工学への応用を考えると、RやCでの議論で十分だからでしょう。

ややこしいのは体kが非可換体だとか、標数0以外の体の場合です。
この場合はおそらく少し違う結果が得られるかもしれません。
この辺は私の知識では確かなことは言えません。
    • good
    • 0
この回答へのお礼

おふたがたとも、詳細な説明ありがとうございました。

お礼日時:2001/10/02 23:56

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QR^∞とR^NとR^ωと∪[n=1,∞]R^nの違いは?

1次元空間をR、
2次元空間をR^2とします。

それを続けて、先にある空間を考えたいとします。
そのとき、

R^∞とR^NとR^ωと∪[n=1,∞]R^nの違いはなんですか?

たしか微妙な違いがあったと思いますが、整理できていないので、ご教示ください。

Aベストアンサー

> R^∞とR^NとR^ωと∪[n=1,∞]R^nの違いはなんですか?

記号は分野によっても使い方に違いがある場合があるので、それぞれの具体的な定義を書き下してください。
ついでに、自分で具体的な定義を書き下せば、それらの違いは明白になると思います。

QF_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} の因数分解

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^2)

のようなのですが、(b+c)(c+a)(a+b)を因数に持つことは分かりますが、残りの因数はどうやってもとめるのでしょうか?

一文字を変数と見て、地道に割り算するしかないのでしょうか?
効率的な計算方法はありますでしょうか?

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^...続きを読む

Aベストアンサー

最後までは計算していませんが、次の方法でできそうです。
F_n = (b+c)(c+a)(a+b)(Σ[ABC] k_ABC a^A b^B c^C) とおきます。
(ここで、A+B+C = 2n+1 です。)
展開すると、F_n = (a^2 b + 略 + 2abc)(Σ[ABC] k_ABC a^A b^B c^C) です。
そして、F_n を例えば、a で A+2 回偏微分、a で B+1 回偏微分、
a で C 回偏微分、した後、a,b,c に 0 を代入します。
F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} に対しても同じようにします。
このようにすると、例えば C > 0 であれば、
k_ABC (A+2)!(B+1)!(C)! = (2n+1)! となり、係数が得られます。

Q極限値lim[n→∞](3^n/(2^n+n^2))とlim[n→∞](2^n+3^n)^(1/n)の求め方は?

(1)lim[n→∞](3^n/(2^n+n^2))
(2)lim[n→∞](2^n+3^n)^(1/n)

の極限値がわかりません。
(1)は3^nで分母・分子を割って
lim[n→∞](3^n/(2^n+n^2))
=
lim[n→∞][1/{(2/3)^n+n^2/3^n}]
までいけたのですがn^2/3^nが収束するのか発散するのか分かりません。
どうなるのでしょうか?

あと、(2)は対数を取って
lim[n→∞]log(2^n+3^n)^(1/n)
=
lim[n→∞](1/n)log(2^n+3^n)
までいけたのですがここから先へ進めません。

Aベストアンサー

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、

 a(n+1)/a(n) = [(n+1)^2/3^(n+1)]/[n^2/3^n]

と比をとってみると、

 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 … (3)

ですが、nが大きいときには、2/n < 1, 1/n^2 < 1 なので、(3)は、

 a(n+1)/a(n) < 1

となり、単調に減少することがわかります。
まずこの時点で発散はしないことがわかります。
また、a(n) > 0 なので、lim_{n→∞} a(n) ≧ 0 となります。

もし、a(n) の収束値bが、正の有限値なら、n→∞で、
 a(2n)/a(n) → b/b = 1
になるはずですが、
 a(2n)/a(n) = [(2n)^2/3^{2n}]/[n^2/3^n] = 4/3^n → 0
になるので、収束値bは正の有限値にはなりません。

従って、
 lim_{n→∞} a(n) = 0 … (4)
が得られます。

[(4)の別証]
(3)式 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 より、
n>10で、
 a(n+1)/a(n) < [1 + 2/10 + 1/100]/3 < 2/3
故に、n→∞ のとき、
 0 < a(n) = [a(n)/a(n-1)]・[a(n-1)/a(n-2)] ・…・ [a(12)/a(11)]・a(11)
      < (2/3)^{n-11}× a(11) = (2/3)^n × (3/2)^{11}a(11) → 0
故に
 lim_{n→∞} a(n) = 0
が得られる。
(別証終わり)


[(2)について]

まず感覚的なことを説明しますと、nが大きいとき、2^nは3^nに比べてはるかに小さくなるので、基本的に、lim[n→∞](2^n+3^n)^(1/n)の、2^n+3^nの部分は3^nに近づくことがわかり、問題の式は(3^n)^{1/n}=3 になることが予想されます。

これを式で言うには、対数をとるより、

 lim_{n→∞} [3^n×{1+(2/3)^n}]^{1/n}
 = lim_{n→∞} 3×[1+(2/3)^n]^{1/n} … (5)

と変形するのが良いでしょう。(2/3)^n → 0 なので、
 [1+(2/3)^n]^{1/n} → 1 … (6)
なので、
 (5) = 3
になります。


なお、(6)が明らかと思われない場合は、
 1 = 1^{1/n} < [1+(2/3)^n]^{1/n} < 1+(2/3)^n → 1
(∵ a > 1 に対して、a^{1/n} = (a^{1/n})^n = a )
より、[1+(2/3)^n]^{1/n} → 1
と証明します。

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、...続きを読む

Qn次元球面、S^n={(a^1,・・・,a^n+1)∈R^n+1|(a

n次元球面、S^n={(a^1,・・・,a^n+1)∈R^n+1|(a^1)^2+・・・+(a^n+1)^2=1}が可微分多様体の構造をもつことを示せ。

という問題で、証明の中でいくつかわからないところがあります。わからない部分を≪≫で書きます。

証明)Vi^+={(a^1,・・・,a^n+1)∈S^n|ai<0}
   Vi^-={(a^1,・・・,a^n+1)∈S^n|ai>0} (i=1,・・・,n+1) とおくと
≪これらはS^nの開集合でありS^nを覆っている。≫←この部分は当たり前に言えてしまうのでしょうか?
≪これらのVi^+,Vi^-がR^nの開集合E^n={(x^1,・・・,x^n)∈R^n|(x^1)^2+・・・+(x^n)^2<1}と同相であることを示す。≫←何故、同相であることを示すのでしょうか?

写像φi:Vi^+→E^n  φi^-1:E^n→Vi^+を実際に移していく。
この後は何とかわかるのですが最初の方の疑問をどなたかお願いします。

Aベストアンサー

≪これらはS^nの開集合でありS^nを覆っている。≫
開集合であることも、ほぼ自明ですよね。
本当に証明するなら、Vi^+(あるいはVi^-)の任意の点の近傍が、Vi^+(あるいはVi^-)に含まれることを言えばいいです。
また、
V0^+ ∪ V0^- ∪ … ∪Vn+1^+ ∪ Vn+1^- = S^
なんで、実際、覆ってますよね。

≪これらのVi^+,Vi^-がR^nの開集合E^n={(x^1,・・・,x^n)∈R^n|(x^1)^2+・・・+(x^n)^2<1}と同相であることを示す。≫
何故?って、これは多様体の定義そのものです。

多様体というのは、一言で言えば、つまり、
「局所的にユークリッド空間と(同相だと)みなせるような図形のこと」です。
とりあえず、Wikipediaのページの説明を見て、多様体とは何なのか直感的な理解をつかんでください。
http://ja.wikipedia.org/wiki/%E5%A4%9A%E6%A7%98%E4%BD%93


人気Q&Aランキング

おすすめ情報