痔になりやすい生活習慣とは?

XRD測定のθとωってどう違うんですか?
図があれば幸いです
よろしくお願いします

A 回答 (4件)

X線回折の教科書では、試料の結晶格子面が平行に書かれていて、格子面に対して入射角と反射角が等しい鏡面反射の図で説明されていますよね。


こういう理想的な配置で鏡面反射測定をするだけなら、ωとθの区別は不要です。
また、逆に完全な多結晶試料(無配向の粉末試料など)の場合にも、そもそもωの定義も出来ないので区別を考える必要は有りません。
問題は、配向性が有る試料や鏡面反射以外の測定をする場合です。θは、通常、入射X線とカウンター(つまり、反射X線)が成す角を2θとして定義した角(いわゆる回折角)です。一方、ωは原点角を基準にした試料の回転角です。
試料をX線回折装置にマウントする場合、通常は誤差のない理想的な面出しは無理ですし、また見かけ上の試料面に対して実際の格子面が傾いていることも有りますので、良く行われるθ-2θの鏡面反射測定でも、厳密にはθ=ωとはなっていません。こういう場合には、カウンター角=2θを有る回折ピーク位置に固定しておいて、ωだけをスキャンするような測定を行い、実験的にθ=ωとなるオフセット角を見つけ出します。
また、単結晶試料などでは、試料の外形面に対して傾いた格子面の測定をすることもあります。この場合には、θとωは全く違った角度になります。さらに、このような単結晶試料を正確に測定するのには、試料を自由な方向に回転させて測定できる、4軸ゴニオメーターと呼ばれる試料ステージを使いますが、こうなるともう、回折角を定義したθと試料回転角の一つであるωは独立な物になります。
    • good
    • 0

θは試料に対するX線の入射角、ωは試料側の回転角です。

どちらも同じ平面上の角度ですが、定義上、実用的にはθを動かすとX線を出す側が、ωを動かすと試料側が動く場合が多いです。
    • good
    • 0

よく見たら、ωは入射角、θは出射角、ですね。

    • good
    • 0

 

http://www.nsg-ntr.com/DATA/data1.htm
を見ると、θは入射角、ωは出射角、らしい。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QXRDの2θ/θ法について教えてください。

XRDの2θ/θ法とはいったいなんなのですか。

よろしくお願いします。

Aベストアンサー

X線を試料水平方向に対してθの角度で入射させ、
試料から反射して出てくるX線のうち、
入射X線に対して2θの角度のX線を検出し、
θに対するその強度変化を調べる手法。
(入射X線源は固定して、試料をθ動かし、検出器を2θ動かす)

このとき、θを細かく変えて(例えば20°から70°)その強度変化を調べると、Bragg条件
2d sin(θ) = nλ (λはX線の波長、dは結晶の原子面間隔。nは整数)
を満たすときにX線強度が強まるので、Braggの式から面間隔がわかり、最終的には試料の結晶構造がわかります。

詳しくは専門書をご覧ください。例えば
カリティ著「X線回折要論」(アグネ)
はわかりやすい気がします。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

QX線回折(XRD)分析の半値幅について

現在粉末用のXRD装置を使用しているのですが、半値幅に含まれる情報に関して教えてください!
参考書などを呼んでいると、結晶性のピークに着目した場合、ピークの半値幅が大きくなるほど結晶子サイズは小さいことを意味すると書いてあり、これはなんとなくわかりました。
しかし、非結晶性のものを測定すると一般的にはブロードピークとなるものが多いかと思うのですが、相互関係がわかりません・・・。非結晶性のものは結晶子サイズが小さいということではないですよね?

段々結晶子サイズが小さくなっていった時に、少しづつピークはブロードに近づくとは思うのですが、
・結晶子サイズが小さくなっている
というのと、
・非結晶性のものである
というものの区別はどうやって判断したらよいのですか?ある程度は半値幅を超えたら非結晶性のものとかいう基準があるのでしょうか?

Aベストアンサー

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低いか、3)装置による制約
から来ます。
原因3)は基準物質を使い補正計算をしてある程度除去することが
できます。
原因1)の影響を考慮したのがシェラーの式ですが、常に原因2)の寄与
も含まれています。
原因2)は小さくても結晶で有れば散乱強度を決める構造因子は定まります。
ここで構造因子に欠陥や小さくなることで発生した構造の乱れを組込めば
非晶性の広がったハローを再現できるかも知れません。
しかし、非晶性物質では構造の乱れは大きすぎ、結晶学的な構造因子は
もう決められません。
その代わりに、原子の相互配置を確率的に表した動径分布関数が散乱強度
の計算に導入されます。
一つの物質からの散乱強度の計算に、ここまでは構造因子方式、ここからは
動径分布関数方式という使い分けはされていません。

したがって、結晶子サイズが小さくなっているというのと、非結晶性の
ものであるということの明確な境界は無いように見えます。
当然、ある半値幅を超えたら非結晶性のものとかいう基準は有りません。

溶融体を急冷して結晶化させようとした場合、できたモノを欠陥だらけの
極微細結晶からなるとするか、非晶質になったと解釈するかは半値幅だけ
からはできないと思います。

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低...続きを読む

Q半導体の縮退って?

半導体の参考書など読んでいるとよく、「縮退」という言葉が出てきます。しかも、どうやらいろいろなケースで使われているようですが、いまいちよくわかりません。

例えば、
・フェルミ準位が伝導帯中や価電子帯中に位置してるとき。
・スピンが上下二種類埋まっているとき。

に関しては分かったのですが、縮退の一般的意味と共に、他のケースについて、どういったときに縮退というのか具体的に教えていただけませんか?
よろしくお願いします。

Aベストアンサー

物理で縮退という用語は主に2つの意味で使われます.

(1) mmky さんご指摘の,
> 同じエネルギーをもつ状態が二つ以上いくつか存在すること.
例えば,クーロンポテンシャル中の荷電粒子のような中心力場では球対称性がありますから,
粒子のエネルギーは角運動量にはよりません.
p 軌道なら3重縮退,d 軌道なら5重縮退.
電子だったら,これにスピンの固有値による2重縮退が加わります.

(2) 電子気体(など)を量子統計で扱わないといけないか,
古典統計でよいかということがあります.
量子統計で扱わないといけない(低温)ときを「縮退している」といいます.
低温かどうかは考えている系のもつ特徴的なエネルギー(例えば,フェルミエネルギー)
を温度に換算したもの(フェルミ温度 T_F)との関連で決まります.
T << T_F なら縮退しています.
縮退ならフェルミ分布関数の分母にある1を無視できないし,
非縮退なら無視してよい(ボルツマン分布になる)というわけです.
sunny_day さんの
> フェルミ準位が伝導帯中や価電子帯中に位置してるとき。
は確かにそのとおりですが,これは縮退のもともとの定義ではありません.
フェルミ準位の位置の結果,そうなっているということです.
なお,フェルミ準位が禁制帯内にあっても,バンド端とのエネルギー差によっては
縮退していることもありえます.

(3) 分子遺伝学でも縮退という用語があります.
1種類のアミノ酸に対応し複数の遺伝子コドンが存在するときにこのように言うようです.
ここら辺は素人なのであまり自信がありません.

物理で縮退という用語は主に2つの意味で使われます.

(1) mmky さんご指摘の,
> 同じエネルギーをもつ状態が二つ以上いくつか存在すること.
例えば,クーロンポテンシャル中の荷電粒子のような中心力場では球対称性がありますから,
粒子のエネルギーは角運動量にはよりません.
p 軌道なら3重縮退,d 軌道なら5重縮退.
電子だったら,これにスピンの固有値による2重縮退が加わります.

(2) 電子気体(など)を量子統計で扱わないといけないか,
古典統計でよいかということがあります.
量子...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング