数学の基礎「齋藤正彦著」p22からの抜粋です。
定義
(X,≦)を順序集合,AをXの部分集合とする。
「1) aがAの元でAの全ての元xに対してx≦aが成り立つ時,aをAの最大元といい,maxAと書く,Aの全ての元xに対してa≦xが成り立つ時,aをAの最小元といい,minAと書く。最大元や最小元は存在するとは限らない,あるとすれば一つしかない。
2) aがAの元で,Aのいかなる元xに対してもa<xとならない時,aを極大元という。x<aなるAの元が存在しない時,aを極小元という。極大元や極小元は存在しない事も有るし,沢山存在する事もある」
と定義が紹介されてるのですが最大元と極大元についてのこの文意
"aがAの元でAの全ての元xに対してx≦aが成り立つ"と"aがAの元で,Aのいかなる元xに対してもa<xとならない"
とは同値だと思います。
違いが分かりません。
一体,どのように違うのでしょうか?
No.4ベストアンサー
- 回答日時:
>最大元と極大元の定義の違いが分かりません
最大元と極大元は抽象的に考えても違いが分からなくて当然だと思います。ここは具体例で理解するのがよいと思います。
例はいろいろ考えられますが、たとえば、(x,y)∈R^2について、
(x1,y1)≦(x2,y2)をx1≦x2かつy1≦y2と定義します。
A={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)}
のとき、Aの最大元は存在しませんが、極大元は3個あります。ちなみに最小限は(0,0)の1個ですね。
ところで、最大元が存在する場合は、全順序集合、半順序集合に関係なく、それは極大元でもあります。しかし、その逆は成り立ちません。
その意味で、「同値」ではありませんね。
No.3
- 回答日時:
最大元の定義で
>Aの全ての元xに対してa≦xが成り立つ時,
ってある「a≦xが成り立つ」という部分がポイント.
これは
・aとxの間に順序が定義できて
・なおかつ,a≦xが成り立つ
という意味.
順序集合ってのは,
任意の元同士で順序が定義できるとは限らない
任意の元同士で順序が定義できるのは「全順序集合」っていう.
順序集合の定義をよくみてみよう.
a≦b,b≦c => a≦c
とかあるけども,これは
「aとb,bとcが順序つけできたら」という前提がある.
大抵の本には「例」としてでている
「べき集合」で「包含関係を順序とする」やつを考えればわかる.
極大元の方は
>a<xとならない
ってある.「a<x」ってのは
・aとxが順序つけできる
・なおかつ,a<xである
ということで,それが否定されているのだから
・aとxは順序付けできない
・または,a>=xである
ということ.
最大元と違うでしょう?
こんな風に分解すれば
どんな元同士でも順序つけできる「全順序集合」なら
同値なのは明らかなのはわかるでしょう
全順序・順序の違いとかは極めて重要です.
例をいろいろ構築して,きちんと理解しましょう.
ここがわかってないと,このあとの各種の帰納法や
Zornの補題とかZermeloの整列可能定理とかが・・
只でさえ黒魔術の呪文に見えるのに,
ますます破滅的に見えて混乱します.
No.2
- 回答日時:
ここで言っているところの順序集合とは、
すべての元の間に順序関係が定義されているわけではない、
いわゆる半順序集合ですね。
これに対して、すべての元の間に順序関係が定義されているのは、
全順序集合となります。
全順序集合なら、
"aがAの元でAの全ての元xに対してx≦aが成り立つ" ⇔ "aがAの元で,Aのいかなる元xに対してもa<xとならない"
は成り立ちますが、
半順序集合では同値になりません。
2つの元の間に、順序関係そのものが定義されていない場合があるからです。
たとえば、「大相撲」は全順序集合と言えます。番付順が順序関係です。
大関と横綱では横綱の方がえらく、横綱が複数いれば東の正横綱がえらい。
これに対して、他の場合は一般には半順序集合です。
たとえば「勤め人」の集合を考えます。
会社Aの中では、普通は「社長」が一番エラい。これが極大値になります。
しかし、「A社の社長」と「B社の社長」とでは、どちらが偉いということは定義されません。
この場合、会社の数だけ偉い人の極値(社長)があることになります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
推しミネラルウォーターはありますか?
推しミネラルウォーターがあったら教えてください
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
順序集合について…
数学
-
e^(x^2)の積分に関して
数学
-
最大元と最大値 最小元と最小値の違いはなんですか?
数学
-
-
4
極大元も極小元も存在しないような集合ってどんなのがありますか?
数学
-
5
複素数 実数 集合 濃度
数学
-
6
Rの半開区間(0,1]と開区間(0,1)が対等であることを次の2通りの方法で示せ。 ①ベルンシュタイ
数学
-
7
א (アレフ)の書き方
数学
-
8
e^-2xの積分
数学
-
9
ハッセ図の書き方が全然わかりません。 ぐぐっても意味が分かりません。 これを例題として、考え方を教え
大学・短大
-
10
「ノルム、絶対値、長さ」の違いについて
数学
-
11
偏微分の記号∂の読み方について教えてください。
数学
-
12
空集合のべき集合
数学
-
13
面積分
物理学
-
14
0の積分
数学
-
15
極大値・極小値 を英語で
数学
-
16
eの2πi乗は1になってしまうんですが。
数学
-
17
上限や最大元についての質問です。
数学
-
18
収束か発散かを示したいです。
数学
-
19
要素数nの集合Aにおける反射律・対称律
数学
-
20
命題「PならばQ」でPが偽ならば、命題は真?
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
皆さん定義を教えてください 「...
-
無限から無限を引いたら何にな...
-
複雑な家庭とは
-
「logx^2=2logx」が間違って...
-
べき乗
-
ACCESS IIF関数 複数条件の設...
-
「互いに素」の定義…「1と2は互...
-
k代数 部分集合Sで、生成された...
-
0の階乗はなぜ1になるのですか?
-
1未満と1以下の違い
-
互いに素とは?
-
k代数 k代数に関する定理の証明...
-
0^1(0の1乗)はいくつでしょ...
-
0と0は互いに素か
-
1wordとは、何文字ですか?
-
lim n→0 =n=0となりますが lim ...
-
ヘシアンが0の場合どうやって極...
-
2進数の符号ビットの入った数...
-
合成関数の定義域と値域の所が...
-
√6=√(-2)(-3)=√(-...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
皆さん定義を教えてください 「...
-
無限から無限を引いたら何にな...
-
複雑な家庭とは
-
「互いに素」の定義…「1と2は互...
-
べき乗
-
日本語 ことば ひとまわり ふた...
-
1未満と1以下の違い
-
最大元と極大元の定義の違いが...
-
p⇒q=(¬p)∨qについて
-
「logx^2=2logx」が間違って...
-
eの0乗は1ってどういう原理です...
-
ACCESS VBAでインポート定義の場所
-
ヘシアンが0の場合どうやって極...
-
ACCESS IIF関数 複数条件の設...
-
画像の説明で一番最後の閉包作...
-
5桁の整数nにおいて,万の位,...
-
“半日”って何時間のことなんで...
-
0^1(0の1乗)はいくつでしょ...
-
√6=√(-2)(-3)=√(-...
-
lim n→0 =n=0となりますが lim ...
おすすめ情報