量子力学におけるハイゼンベルクの不確定原理について質問させていただきます。
量子力学の教科書に
位置と運動量の不確定性は
ΔxΔp_[x]≧h/4π
で表され、x(t)=v_[x]t,E(v_[x])=(mv_[x]^2)/2とすると
ΔtΔE≧h/4π
に拡張される。
とされているのですが、どのようにこの“拡張”を証明できるのでしょうか。
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (5件)

#3です。


質問者さんにも参考となると思いますので、再びここを借りて、#4さんのポアンカレサイクルについて触れておきましょう。

時間の対称性の破れを論じる時に、しばしばポアンカレサイクルに搦めて論じる方が居りますが、これもやはり慎重に論じないと、判ってもいないのに判った気にさせられてしまうことがあります。

そもそも、ポアンカレサイクルは古典力学の位相空間内の軌跡に関する定理です。そして、その位相空間内で「もし運動が有限領域に閉じ込められているのなら」という条件付きで適用可能な定理です。

従って、その条件を満たさない状況ではポアンカレサイクルの概念は意味をなさなくなります。自然放出の問題では、どこでこの条件が満たされなくなるか、一つ一つ解説してみましょう。

先ず、これは古典力学の問題ではなく、量子力学の問題だと言う点です。従って、始めから位相空間内の軌跡と言う概念が存在しません。このことについてはもう一度後に説明します。

次に、荷電粒子が有限の空間に閉じ込められており、その境界条件にエネルギーの散逸が無い、すなわち量子力学のシュレーディンガー方程式が成り立っている場合には、光のエネルギースペクトルが不連続の値を持ちます。その場合には、運動は準周期的になり、共鳴効果による自然放射は起こりません。自然放射を起こさせるためには荷電粒子は無限大の空間の中に在り、従って光のエネルギースペクトルが連続に成っている必要があります。ですから、運動が有限領域に閉じ込められているという条件も満たさないのです。

もう一つ、上で述べた量子力学について、量子力学は一般に座標空間か運動量空間の中に広がりを持った波動関数を取り扱います。従って、個々の軌跡ではなく、量子論的な確率アンサンブルを扱うのです。そこで、それに対応して、例えば古典力学でも、位相空間内の統計的なアンサンブルを考えてみましょう。これは、一般には位相空間内でゼロでない体積を持って連続的に分布する点の集まりで記述されます。そこで、極端にそのアンサンブルがたった2点だけで出来ているような場合を考えてみましょう。非線形でカオス的な振る舞いを示す古典系では、ある一点の運動の無限近傍での他の一点の振る舞いは、はじめの点との振る舞いと完全に違ったものになることが知られています。ですから、たとえ運動が位相空間内の有限領域に閉じ込められていたとしても、はじめの一点から出発して、ある時間経ってその近傍にまた点が戻って来た時の時間と、その無限近傍のもう一点から出発してそれがその一点の近傍に戻ってくる時間は全然違っています。そこで、その二点が同時に元の2点の近傍に戻ってくる時間はそれぞれの戻ってくる時間の最小公倍数になるわけです。それが、3点に成ったら、その最小公倍数は2点の時よりも桁違いに長くなることは判りますね。ところが一般には古典力学でも位相空間内のアンサンブルは有限な体積を持っているのですから、与えられた一点の周りの無限集合の運動を考えていることになります。従って、カオス的な振る舞いをする非線形系では,その無限の点が同時にもとの近傍に帰ってくる時間は無限大となってしまいます。別な言い方をすると、古典力学でも、位相空間内のアンサンブル、すなわち無限の点の集合全体に対しては、たとえ運動が有限な領域に閉じ込められていたにしても、それに対応するポアンカレサイクルは一般の非線形系には存在しません。

ですから古典力学でも、時間対称性の破れをたった一つの軌跡に対して論じているのか、それともアンサンブルについて論じているのかで、全然違ってくるのです。

いわんや、量子力学では軌跡と言う概念が無く、アンサンブルに関する概念のみが在るのですから、これに対してポアンカレサイクルを持ち出して、その運動を論じるのは筋違いなのです。量子力学の専門の方でも、時間の対称性の破れを専門にしていない方の間では、ポアンカレサイクルに対してこのように混乱している方が時々いると言う経験を、私もしたことがあります。

このように、少なくとも3つの側面から、どうして自然放射の問題をポアンカレサイクルの概念を使いながら説明することに意味が無いか、お判りいただけたでしょうか。
    • good
    • 0
この回答へのお礼

詳しいご回答ありがとうございます。
頂いたご回答について、調べるなどして懸命に理解しようとしたのですが、この春から初めて量子力学を学び始めたばかりですので、完璧な理解にはもう少し時間が必要になりそうです。
しかし、ΔxΔpとΔtΔEの非等価性だけでなく、量子力学の奥深さと面白さについても教えていただいたような気がします。
ありがとうございました。

お礼日時:2009/05/17 02:56

#2です。


私が大雑把と書いたのは、まさに大雑把にしか書けない不完全な知識しか無いからでした。
私の理解の仕方では不十分で、例外も見落としも多数あり、いろいろな現象の分類もできません。
調和振動子のコヒーレント状態のように、異なるエネルギー固有状態の重ね合わせであるにもかかわらず波束が広がらないというご指摘は、その例外の一例です。

私の示した解釈がどのように不完全でどこから間違っているのか、質問者さんにも汲み取っていただければと思います。

私自身まだ納得していなくて、しっかり考えている専門家ならきっと指摘するだろうと予想した点を#3さんがしっかり突いてくれていると思いました。
ここに
ベキ則、指数関数則、デコヒーレンス、対称性の破れ、共鳴特異性、非線形性による位相の混合、第二法則
などのキーワードが出てきています。私の勉強になっている^^;
時間とエネルギーの不確定性関係が、時間の矢の問題の中で議論されているわけですね。

ちなみにポアンカレサイクルと書いたのは、光の自然放出の勉強をしたときに指数関数的減衰をそのように解釈したことを思い出したのです。上のキーワードでこれを理解し直すきっかけになれば。後日、別に質問を立てるかもしれません。
    • good
    • 0
この回答へのお礼

詳しいご回答ありがとうございます。
頂いたご回答について、調べるなどして懸命に理解しようとしたのですが、この春から初めて量子力学を学び始めたばかりですので、完璧な理解にはもう少し時間が必要になりそうです。
しかし、ΔxΔpとΔtΔEの非等価性だけでなく、量子力学の奥深さと面白さについても教えていただいたような気がします。
ありがとうございました。

お礼日時:2009/05/17 03:01

この機会に#2さんの解釈に対するコメントを書かせてもらいます。

時間に関する物理学が、現在どういう側面で論じられているかの参考になると思います。

>大雑把に書きます。時間とエネルギーの不確定性関係の簡単な解釈(私の理解)は、「一定のエネルギー幅ΔEで重ねあわされた量子状態は、Δt程度までしかその状態を保持できない」というものです。Δt程度時間が経過すると、重ね合わせの位相がばらばらになってしまうからです。

確かに大雑把に言って、その解釈は間違いではないですが、それをいきなり励起状態の寿命に適用してしまうと間違いになります。ここの例で論じられている自由運動の場合には、平面波の重ね合わせによって局在する波束が作られています。そして自由運動のエネルギーは運動量、あるいは波数ベクトルに関して2次関数として非線形に依存しますから、その非線形性故に、必ずその波束は広がって行きます。ただしその非線形性がどんな非線形性であっても、その広がり方を計算してみると分かりますが、必ず時間に関してベキ関数として広がり、指数関数的振る舞いはしません。ご存知のようにベキ関数には初期条件に依存しないその関数に固有な時間スケールが存在しません。そこで、妥協案としてh/ΔE程度の時間で波束が広がったと看做そうじゃないか、というのがこの「不確定性関係式」の解釈です。実際、調和振動子のような線形な系では、波束は広がりませんし、また1次元空間を伝わる光の波束も、エネルギーが波数ベクトルに線形に依存しているので波束は広がりませんので、上のような「不確定性関係」の解釈が出来なくなってしまいます。

一方、デコヒーレンスを伴った励起状態の崩壊は時間の関数としてベキではなく、指数関数的に起こります。指数関数には初期状態に依存しない、系固有の時間スケールが在りますね。その固有な時間スケールのことを寿命と呼んでいるのです。そして、その指数関数部分が、時間の符号の反転に対する対称性を破っているのです。この指数減衰は荷電粒子と光の間の相互作用を数学的に分析した時にエネルギー空間の中に現れて来る共鳴特異性という特異性が原因で出て来ます。従って、非線形性による位相の混合とは全く違った、相互作用が原因で出てくる特異性から出てくる現象なのです。良く考え見ると、波束の広がりは既に自由運動にも見られる現象なので、波束が時間とともに一方方向に広がって行くから、時間の対称性が破れたと言うわけにはいきませんね。

ですから、もし、
>位相がばらばらになったあとにぐるっと回って元に戻らないのは、そのポアンカレサイクルを無限大とみなせるから、

時間の対称性が破れた、と言おうとするのだったならば、励起状態の崩壊と言う、まさに時間の対称性を破る現象の説明にはなっておりませんね。

>励起状態がある時間で崩壊するのは、その励起状態が「全ハミルトニアン」の固有状態ではないから。

これも、曖昧な表現になっています。自由運動だろうが相互作用が在ろうが、どんな系でも「全ハミルトニアン」の固有状態でなければ、必ず時間的に変化します。その変化は必ずしも崩壊現象ばかりでは在りません。ですから、「全ハミルトニアン」の固有状態で無かったから、崩壊現象と言う時間の向きの対称性を破る運動が起こったと言う説明にはなって居りません。上でも触れましたが、時間の対称性の破れが起こるのは共鳴特異性が原因なのです。

#1の所でも触れておきましたが、物理学の基本方程式は、時間の向きの反転に対して対称に出来ています。それにもかかわらず、この宇宙には励起状態の崩壊やら熱力学系でのエントロピー増大の法則やらと、この物理学の基本方程式あるいは基本原理と呼ばれる物と一見矛盾する現象が充満しています。そこで、この矛盾をどう解決したら良いかは、物理学の大問題の一つになっています。そして、近年のカオスなどの非線形物理学の進歩や、非平衡統計力学の進歩は、この問題を上で触れた共鳴特異性に結びつけるなどの進歩を伴って、現在多くの研究者達によって論じられている問題です。その結果、崩壊現象における時間とエネルギーの間の「不確定性関係」もその文脈の中で理解されつつ在ります。また、その時間の対称性の破れの文脈の中で、果たして、時間に対応した演算子が作れるものかどうかと言う問題も論じられ始めています。
    • good
    • 1

#1さんのコメント、興味深く読みました。


私はいいかげんな著者なのかなあ、と思ったのですが、著者の苦しみと見るんですね。
たしかに、なるほどその通りかも。。。

私はそれほど詳しくないので初学者的なコメントを。
たまたま手元にある教科書の
『量子力学I』猪木慶治・川合光著(講談社)
には、「拡張」ではなく「推論」と書いてあります。
位置と運動量の不確定性関係と、時間とエネルギーの不確定性関係とを対応付ける、ひとつの試みではないでしょうか。
「証明」にはこだわらない方がよいと思います。
その二つの不確定性関係の意味は違うのですが。

その違いについて大雑把に書きます。
時間とエネルギーの不確定性関係の簡単な解釈(私の理解)は、
「一定のエネルギー幅ΔEで重ねあわされた量子状態は、Δt程度までしかその状態を保持できない」
というものです。Δt程度時間が経過すると、重ね合わせの位相がばらばらになってしまうからです。

励起状態がある時間で崩壊するのは、その励起状態が「全ハミルトニアン」の固有状態ではないから。
全ハミルトニアンの固有状態でその励起状態を展開すると、だいたいエネルギー幅ΔE程度で重ねあわされた量子状態になっていて、だいたいΔt程度の時間で位相がばらばらになり、それが寿命だという感じです。
位相がばらばらになったあとにぐるっと回って元に戻らないのは、そのポアンカレサイクルを無限大とみなせるからです。デコヒーレンスも関係すると思います。
それは位置と運動量の不確定性とはかなり違った意味ですね。
大雑把ですが参考まで。
    • good
    • 0

なるほど、量子力学の教科書では「拡張」という言葉を使っているのですか。

その教科書の著者の苦しみが良く判ります。この著者は、時間とエネギーの間に不確定性原理が存在するとは言えないものだから、「拡張」するなんて苦し紛れの言葉を使っているのですね。

以下の話は物理学の上級編です。もし物理学を本気で分かりたいのなら、我慢して読んで下さい。

貴方が書いた、x(t)と運動エネルギーE(v_[x])という特殊なエネルギーの表現を使うことにすれば、「時間とエネルギー」の「不確定性関係式」は、数学の論理から誰にでも導き出せます。ですから、その導出法をここでは示しません。もし、貴方がこの式を導き出せないようだったら、物理学を語るための最も基本的な数学という言語を理解していないことになってしまいますので、何とか導出法を理解して下さい。そうでないと、自分はフランス語の詩を書きたいのだが、フランス語を話すことが出来ない、と言っているような物です。

さて、もっと本質的なのは物理です。たとえこの式を数学的に導出できたからと言って、この式の意味が判るようになるわけでは在りません。物理学では位置も運動量も正準共役の関係にある演算子です。そして、不確定性関係とは、その演算子間の期待値と揺らぎの関係式を表しているだけですので、ミステリーでもなんでもなく、ただ単に、位置も運動量も数ではなくて演算子だよ、と言うことを表現しているだけの関係式です。

ところが、物理学ではエネルギーの方は演算子ですが、物理的に意味の在るエネルギーの期待値には必ず下限が在るために、それに正準共役な時間に対応する演算子が存在できないことを、数学的に厳密に証明できるのです。この証明は、量子力学のスーパースター、パウリによってなされました。ですから、時間とは物理学の中でも特別な物理量で、それに対応する演算子が存在しないのです。その結果、現行のままの物理学では、時間とエネルギーの間には原理的に不確定性関係は存在しません。一見驚きなのですが、相対性理論と言う古典力学では時空の幾何学の中で時間と座標を混ぜることができるのに、量子ではそうは行かず、時間は特別なのです。それにも関わらず、時間と運動エネルギーというエネルギーの中でも特殊なエネルギーの間にだけ強引に不確定性関係みたいな物を書いてみたのが、貴方の表現した「時間とエネルギー」の間の「不確定性関係式」なのです。

物理学では、時間とエネルギーに関するこの「偽物」の不確定性関係が使われる場所は、励起状態のエネルギーの不確定性とその励起状態の寿命に結びつける場合です。ところが、励起状態は私達の未来に向かってのみ崩壊しますから、この現象では、この宇宙の時間には過去から未来へと流れる時間の向きがあることを知っていることになります。これを物理学の専門用語では、「この現象では時間の向きの対称性が破れている」と言います。ところが、古典力学でも量子力学でも相対性理論でも、全ての物理学の基本原理では、時間の向きの対称性は破れておらず、従って、過去現在未来と言う一方方向だけ流れる時間の存在を一見否定しています。従って、そもそも励起状態の寿命と言う概念が、物理学の基本原理と一見矛盾してしまうのです。

このことから分かるように、位置と運動量の不確定性関係と、時間とエネルギーの不確定性関係を同列に扱うことは、物理学では出来ません。その苦しさを、この教科書の著者は「拡張」という、苦し紛れの言葉で表現しているのです。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q主人に小さな約束を幾度となく破られる・・・どうしたらいいでしょうか

主人に、約束を何度も破られ不信感がつのっています。
いわゆる浮気やギャンブルではないので大したことがないといえばそうなのですが・・・
きっとどちらの夫婦にもおこりうる問題と思い、ご意見をうかがいたい次第です。

主人はいわゆる無呼吸症候群で、イビキが激しいです。
私は音に過敏な性質なのでとても眠れません。
そこで、治療用の機器(鼻に空気を送り込む)をレンタルし使っています。
それを使用すると静かで、本人も「翌朝の目覚めが違う」「とても効果を感じる!」と言っています。

しかし、よくそれをつけずにリビングでうたた寝してしまいます。
TVを見たり、PCをいじっているうちに意識がなくなるらしく、寝入った自覚がないといいます。

寝入りばなはまだしも、深夜2時や明け方5時に起こされるのはたまったものではありません。
共働きなので睡眠時間を確保したい私としては、度々起こされると本当に心身共にきついし、腹が立ちます。
最近はほぼ毎日です。
翌日、私は仕事なのに主人は休みというときによくあります。

イビキで起こされたらひとまず主人を起こしに行き、「ちゃんと布団で寝て」と言います。
慌てて飛び起きますが、寝ぼけてそのまま二度寝しまた起こされることもあります。
翌朝は本人も反省し落ち込んで「もうやらない」と約束するので私も許しますが、間をおかず繰り返します。

私も対策をいろいろ考えました。
いつも寝そべる床に横たわれない障害物を置いてみたり
言葉で諭してみたり・・・
「機器をつけて寝た方が自分のためにもなるんでしょ?」
「うたた寝は気持ちいいんだろうけど、人に迷惑かけてまですること?」
「あんまり何度も約束破られると信用できなくなっちゃうよ」など。
「イビキで私を起こした翌日は大好きなビール抜き!」とペナルティを課しても、あまり効果はありません。
それどころか、私が寝た後にコッソリビールを飲んでそのままうたた寝し、私に見つかる・・・ということもありました。

最近ではあまりに腹が立つので、大きい声で怒ってしまいます。(寝ぼけているので小さな声じゃ届かない)
結婚前は声を荒げることなど皆無だったので、
怒った後は手が振るえ興奮状態が続いて朝まで一睡もできないこともあります。

その他のポイントとしては、
●主人はうたた寝を反省してはいるが無自覚で直しようがないと言う。
(でもどうにか工夫しようという意識はなさそう)
●私は、無意識のうちにうたた寝してしまうという感覚がどうしても理解できない。(眠くなったら布団に入るのが当たり前では?)
●あまりに何度も約束を破られるので、もうどういう態度で接していいのかわからない。
●就寝時間が全然違うので同時に寝るのはムリ。

どういう話合い法、解決法があるでしょうか?
経験の伴ったアドバイスのある方、よろしくお願いいたします。

主人に、約束を何度も破られ不信感がつのっています。
いわゆる浮気やギャンブルではないので大したことがないといえばそうなのですが・・・
きっとどちらの夫婦にもおこりうる問題と思い、ご意見をうかがいたい次第です。

主人はいわゆる無呼吸症候群で、イビキが激しいです。
私は音に過敏な性質なのでとても眠れません。
そこで、治療用の機器(鼻に空気を送り込む)をレンタルし使っています。
それを使用すると静かで、本人も「翌朝の目覚めが違う」「とても効果を感じる!」と言っています。

し...続きを読む

Aベストアンサー

あの…睡眠時無呼吸症候群の御主人ですよね。
無呼吸の方は眠りがかなり浅いのでだから眠ってはいけないと思っているのにうたたねをしてしまっているのですよ…

だってJRの運転手だって居眠りなんてしてはいけないことは約束云々以前に絶対してはいけないこと、わかりきっていますよね。
なのに居眠りしてしまう。
それがこの病気の症状なんです。

ご主人は約束を破ろうと思っているのではありません。
列車の運転中の運転手と同じく絶対に寝てはいけない、奥さんに怒鳴られる、とわかっている、けれど寝てしまうんですよ。体が眠りを要求するんですよ。

些細な嘘をたくさんつかれるというのは私自身の悩みごとなのでお仲間かもしれないと思いヒントがあればと覗いてみたら…
私は本当に嘘をつかれて騙されてきたりごまかされてきたので、あなたのは「嘘をつかれている」には当たらないと断言できますよ。

あなたもお仕事のお疲れと睡眠不足とストレスでかなり神経がたっておられるのだと思います。
一番はまずあなたが熟睡して一度疲れをすっきりさせてリセットさせることですね。
睡眠不足でイライラしているのに良い考えなど浮かびませんし何より感情が整いません。
結婚前怒鳴り声などあげたことがなかったあなたが怒鳴るぐらいです。
相当疲れがたまっているのです。
お子さんなどがいらっしゃらないのであれば一度ホテルなどに宿泊されるとかぐっすり寝てみてください。
それから冷静になって考えませんか。

ご主人の病気を治療すること、それしか解決の方法はありませんよね。
「真剣に病気を治すつもりでダイエットしないならもう一緒に暮らせない、離婚するつもりだ」と脅してみるのはどうでしょうか。

まずは1週間ほど安眠できる環境を確保してお疲れを癒してくださいね。

あの…睡眠時無呼吸症候群の御主人ですよね。
無呼吸の方は眠りがかなり浅いのでだから眠ってはいけないと思っているのにうたたねをしてしまっているのですよ…

だってJRの運転手だって居眠りなんてしてはいけないことは約束云々以前に絶対してはいけないこと、わかりきっていますよね。
なのに居眠りしてしまう。
それがこの病気の症状なんです。

ご主人は約束を破ろうと思っているのではありません。
列車の運転中の運転手と同じく絶対に寝てはいけない、奥さんに怒鳴られる、とわかっている、けれど...続きを読む

QMathematicaでのTr{(sl[q]+m)γμu(sl[p]+sl[k]+m)γνu(sl[p]+m)γνd( sl[p]+sl[k]+m)γμd}

Mathematicaで、

Tr{(sl[q]+m)γμu(sl[p]+sl[k]+m)γνu(sl[p]+m)γνd( sl[p]+sl[k]+m)γμd}
= Tr[(-2sl[q]+4m)( sl[p]+sl[k]+m)(-2sl[p]+4m)( sl[p]+sl[k]+m)]

の計算をやってみようと思い、下記のプログラムを作りましたが、

と一致しません。

式―1と式―2が、
Tr{(sl[q]+m)γμu(sl[p]+sl[k]+m)γνu(sl[p]+m)γνd( sl[p]+sl[k]+m)γμd}

の計算です。(2通りやりました)

式―3が
Tr[(-2sl[q]+4m)( sl[p]+sl[k]+m)(-2sl[p]+4m)( sl[p]+sl[k]+m)]


の計算です。



demoteRank4to2[y_]:=Flatten[Map[Flatten,Transpose[y,{1,3,2,4}],{2}],1];

pauli2times[g1_,g2_]:=demoteRank4to2[Outer[Times,g1,g2]];

g1={{0,1},{1,0}};
g2={{0,-I},{I,0}};
g3={{1,0},{0,-1}};
g0={{1,0},{0,1}};

gu[0]=pauli2times[g2,g3];
gu[1]=-pauli2times[g1,g3];
gu[2]=pauli2times[g0,g2];
gu[3]=-pauli2times[g0,g1];

e4=IdentityMatrix[4];

gd[0]=1*gu[0];
gd[1]=-1*gu[1];
gd[2]=-1*gu[2];
gd[3]=-1*gu[3];

sl[q]=(gu[0]*q0+gu[1]*-q1+gu[2]*-q2+gu[3]*-q3);
sl[p]=(gu[0]*p0+gu[1]*-p1+gu[2]*-p2+gu[3]*-p3);
sl[k]=(gu[0]*k0+gu[1]*-k1+gu[2]*-k2+gu[3]*-k3);
gmu=(gu[0]+gu[1]+gu[2]+gu[3]);
gnu=(gu[0]+gu[1]+gu[2]+gu[3]);
gmd=(gd[0]+gd[1]+gd[2]+gd[3]);
gnd=(gd[0]+gd[1]+gd[2]+gd[3]);

ms=m*e4;


(*式ー1*)
s=0;
y1=0;
For[x=0,x£3,x++,
s=Tr[(sl[q]+ms).gu[x].(sl[p]+sl[k]+ms).gu[x](sl[p]+ms).gd[x].(sl[p]+sl[k]+ms).gd[x]];
y1=y1+s;
Print[FullSimplify[y1]];
];

(*式ー2*)
y2=Tr[(sl[q]+ms).gmu.(sl[p]+sl[k]+ms).gnu(sl[p]+ms).gnd.(sl[p]+sl[k]+ms).gmd];
Print[FullSimplify[y1]];

(*式ー3*)
y3=Tr[(-2sl[q]+4ms).(sl[p]+sl[k]+ms).(-2sl[p]+4ms).(sl[p]+sl[k]+ms)];

Mathematicaで、

Tr{(sl[q]+m)γμu(sl[p]+sl[k]+m)γνu(sl[p]+m)γνd( sl[p]+sl[k]+m)γμd}
= Tr[(-2sl[q]+4m)( sl[p]+sl[k]+m)(-2sl[p]+4m)( sl[p]+sl[k]+m)]

の計算をやってみようと思い、下記のプログラムを作りましたが、

と一致しません。

式―1と式―2が、
Tr{(sl[q]+m)γμu(sl[p]+sl[k]+m)γνu(sl[p]+m)γνd( sl[p]+sl[k]+m)γμd}

の計算です。(2通りやりました)

式―3が
Tr[(-2sl[q]+4m)( sl[p]+sl[k]+m)(-2sl[p]+4m)( sl[p]+sl[k]+m)]


の計算です。



demoteRank4to2[y_]:=Fla...続きを読む

Aベストアンサー

ダミーインデックス(総和添字)が2組あるとき、例えば
 γμuγνuγνdγμd
はμとνがそれぞれ独立に0から3までの値を取ります。したがってめんどくさいけど全部書くと
 γμuγνuγνdγμd
=γ0uγ0uγ0dγ0d + γ1uγ0uγ0dγ1d +γ2uγ0uγ0dγ2d + γ3uγ0uγ0dγ3d
+γ0uγ1uγ1dγ0d + γ1uγ1uγ1dγ1d +γ2uγ1uγ1dγ2d + γ3uγ1uγ1dγ3d
+ γ0uγ2uγ2dγ0d + γ1uγ2uγ2dγ1d +γ2uγ2uγ2dγ2d + γ3uγ2uγ2dγ3d
+γ0uγ3uγ3dγ0d + γ1uγ3uγ3dγ1d +γ2uγ3uγ3dγ2d + γ3uγ3uγ3dγ3d …(1)
です。一方、
For[x=0,x£3,x++, s=Tr[(sl[q]+ms).gu[x].(sl[p]+sl[k]+ms).gu[x](sl[p]+ms).gd[x].(sl[p]+sl[k]+ms).gd[x]]
としたのでは
γ0uγ0uγ0dγ0d + γ1uγ1uγ1dγ1d + γ2uγ2uγ2dγ2d + γ3uγ3uγ3dγ3d …(2)
のような計算をすることになります。また(*式ー2*)では
(γu0+γu1+γu2+γu3) (γu0+γu1+γu2+γu3) (γd0+γd1+γd2+γd3) (γd0+γd1+γd2+γd3) …(3)
のような計算になってしまいます。(1)と(2)(3)は等しくありません。これは単にプログラミングのミスでしょうか。(1)はローレンツ不変な形になっていますが、(2)(3)はローレンツ不変な形ではありません。ローレンツ不変でない式を書くようでは基本的な部分の理解が不十分なのではないでしょうか。これは数式処理とか場の量子論の問題ではありません。場の量子論の問題とはもっと重要で微妙な問題のことを指します。

ダミーインデックス(総和添字)が2組あるとき、例えば
 γμuγνuγνdγμd
はμとνがそれぞれ独立に0から3までの値を取ります。したがってめんどくさいけど全部書くと
 γμuγνuγνdγμd
=γ0uγ0uγ0dγ0d + γ1uγ0uγ0dγ1d +γ2uγ0uγ0dγ2d + γ3uγ0uγ0dγ3d
+γ0uγ1uγ1dγ0d + γ1uγ1uγ1dγ1d +γ2uγ1uγ1dγ2d + γ3uγ1uγ1dγ3d
+ γ0uγ2uγ2dγ0d + γ1uγ2uγ2dγ1d +γ2uγ2uγ2dγ2d + γ3uγ2uγ2dγ3d
+γ0uγ3uγ3dγ0d + γ1uγ3uγ3dγ1d +γ2uγ3uγ3dγ2d + γ3uγ3uγ3dγ3d …(1)
です。一方、
For[x=0,x£3,x++, s=Tr[(sl[q]+ms).gu[x]....続きを読む

Qイスラム教の経典「コーラン」が破られる事件

宗教的理由もわかりますが、日本国内でこのような事で騒ぎを起されるのは非常に迷惑極まりないと思います。一体彼らは何を主張したいのでしょう?殺し合いになるとか、戦争だとか・・。それなら日本から出て行けと言いたいです。

まず、コーランの取り扱いですが、実際に信者以外の人間が入手する事は可能なのでしょうか?命より大切だと言うコーランの扱いがこれほどずさんなのは一体なぜ?
企業の重要書類以下の扱いでなければ、このような事は起こらないと思います。パキスタン人は、日本人が関与しているような言い分でデモを行っていました。実際は外国人同士の宗教問題かもしれないのに。それもパキスタン人同士のです。それを何の根拠もなしに、日本人に訴えるなど、迷惑極まりない。この事件の真相に日本人は関与していないかも知れないのに、外務省にデモを行うなど、おかど違いもよいとこです。彼ら自身が、自らの原因で起した宗教上の問題を、何の根拠もなしで外務省にデモを起したただのパフォーマンス集団です。自らのミスでコーランを破られたことの責任転換を、関係が無いかも知れない日本に訴えるなど、言語道断です。戦争だの殺し合いだとかだの・・このようなことにコーランを入手した経路を洗えばすぐにわかりそうなものじゃないですか。イスラム教徒が関与していなければ、入手出来ないのですから。それを責任転換するなど、いいかげんにしてほしいものです。

彼らにとっての宗教上の問題の大きさも理解出来ますが、無責任な責任転換をするのはいいかげんにしてほしい。

宗教上の問題に詳しい方、この事件についてのコメントをください。また日本語でイスラム教の関連団体にメールを送ることは出来るのでしょうか?
メールアドレス,URL等ご存知の方、教えてください。

宗教的理由もわかりますが、日本国内でこのような事で騒ぎを起されるのは非常に迷惑極まりないと思います。一体彼らは何を主張したいのでしょう?殺し合いになるとか、戦争だとか・・。それなら日本から出て行けと言いたいです。

まず、コーランの取り扱いですが、実際に信者以外の人間が入手する事は可能なのでしょうか?命より大切だと言うコーランの扱いがこれほどずさんなのは一体なぜ?
企業の重要書類以下の扱いでなければ、このような事は起こらないと思います。パキスタン人は、日本人が関与している...続きを読む

Aベストアンサー

色々な意見が飛び交っているように、難しい事件ですよね。
ただ、イスラムを日本から締め出すのは現状では無理でしょう。労働力の確保という点からみれば、日本としては、イスラムを含めて相当数の人間が必要不可欠ですから。

uedaharuoさんに同調できる部分もあります。
穏健なイスラム教徒の人たちはいいとしても、あまり過激なイスラム教徒の人たちは日本に来て欲しくありませんね。権利も大事ですが、私にとっては他人の信教の自由よりも自分の命、家族の命、友人の命の方が大切。たとえ日本人の理解不足に原因があったとしても、街中でドンパチかまされて無関係の人間まで殺されたらイヤですから。
断っておきますが、これはあくまで「過激」な人たちにつてですから、閲覧する人たちも誤解しないで下さいね。

私は語気を荒立てる気はありませんが、イスラムの人も日本に来た以上日本の憲法に従うのは当然だと思います。
日本では、信教の自由は日本国憲法において保障されています。コーランもバイブルも関係ありません。
その国に来たら、その国の法律に従うのが国際法上のルールです。たとえコーランが何を言おうが、日本においてコーランは日本国憲法の枠内です。それを理解されない人は日本に入国すべきではありません。
回答された方にも以上の点を誤解しておられる方がいる様なので記してます。

今回抗議活動をされた人たちは、報道を見る限り穏健な人が多く、日本の法律を尊重されている方たちが主導しているようなので、これ以上こじれることは無いと期待しています。

あと、こういう議論は犯人が逮捕されてからでも・・・、という意見もありましたが、どうでしょう?
逮捕されると思いますか?
そんなことしたら大変ですよね~。
その犯人は生涯、一部の「過激」な人たちから逃げて回らないといけないんですよ。
これはこれで問題がある気がするなぁ・・・。

月並ですが、
「私は、絶対にコーランを破いたりしないぞ!」と心に誓うことが、日本人にとってもイスラムにとっても、最も有意義でしょう。
主義主張は後回しにして、お互い一歩ずつ後ろに下がって、今回のことは穏便に済ませたい所ですね。

色々な意見が飛び交っているように、難しい事件ですよね。
ただ、イスラムを日本から締め出すのは現状では無理でしょう。労働力の確保という点からみれば、日本としては、イスラムを含めて相当数の人間が必要不可欠ですから。

uedaharuoさんに同調できる部分もあります。
穏健なイスラム教徒の人たちはいいとしても、あまり過激なイスラム教徒の人たちは日本に来て欲しくありませんね。権利も大事ですが、私にとっては他人の信教の自由よりも自分の命、家族の命、友人の命の方が大切。たとえ日本人の理解不足...続きを読む

QTr[(sl[q]+m)( sl[p]+sl[k]+m)(sl[p]+m)( sl[p]+sl[k]+m)]の計算について

コンプトン散乱の振幅を求める際、m=0のときは、
Tr[sl[q]( sl[p]+sl[k])sl[p]( sl[p]+sl[k])]で求まりますが、
mが0で無い時は、
Tr[(sl[q]+m)( sl[p]+sl[k]+m)(sl[p]+m)( sl[p]+sl[k]+m)]
だと思うのですが、下記は、それを計算したものです。計算は正しいでしょうか?


計算結果は、
MSN→「コミュニケーション」の「コミュニテイ」を選択(左の欄にあります)
→「物理とともに」を選択→「物理研究室群」を選択→「量子力学」を選択
→「Tr[(sl[q]+m)( sl[p]+sl[k]+m)(sl[p]+m)( sl[p]+sl[k]+m)]の計算について」を選択
で計算結果が表示します。

教えて!gooでは、質問をHPに記載できません。誠に勝手ですが、もしよろしければ上記のMSNのサイト(質問をHPに記載可能)を通してご回答頂きましたら幸いです。

Aベストアンサー

γμu γνu γμd = -2 γνu
γμu γμd = 4
より
 Tr{(sl[q]+m)γμu(sl[p]+sl[k]+m)γνu(sl[p]+m)γνd( sl[p]+sl[k]+m)γμd}
= Tr[(-2sl[q]+4m)( sl[p]+sl[k]+m)(-2sl[p]+4m)( sl[p]+sl[k]+m)]

p0^2=p1^2=p2^2=p3^2=0 という条件がどこから出てくるのかさっぱり分かりません。低エネルギーの極限での断面積を求めようとしているのか? 低エネルギーの極限でもp0は0ではなくmです。またm=0 とおくことは3次元運動量に比べて質量が小さいとすることなので運動量が大きい時の近似であることを確認しておきます。

Qログインパスワードを破られる?

高校生の娘が、ログインパスワードをくぐり抜けて私のwindows7を起動し、使っているようなのですが、そんなことができるのでしょうか。
パスワードがばれているとは思えないのですが。
どうやらメール送信やネット閲覧をしているようです。

Aベストアンサー

http://oshiete.goo.ne.jp/qa/5695611.html
http://oshiete.goo.ne.jp/qa/6087187.html
上の質問を見るとできるようです。時間制限もBIOSで時間戻せば回避できると聞いたことありますし、使わせたくないときはかぎ付きの戸棚にでも入れといたほうがいいみたいです。

Qサイエンス社 演習量子力学[新訂版] 岡崎誠・藤原毅夫著

サイエンス社 演習量子力学[新訂版] 岡崎誠・藤原毅夫著

p64例題4の解答のついて

下から二番目の式の

[ E^(0)_k   V_0/2  ]
[ V_0/2   E^(0)_k-q ]

という行列があるのですが、これがどこから出てきたのかわかりません。解説では要項(12)を利用しろと書いてあるのですが、
この要項(12)自体、どのように導いたのかわかりません。

自分では

ψ_q/2とψ_-q/2が縮退してる(これもあやしい気がします。ψ_k+qとψ_k-qが縮退してるのか?)のだから、縮退ありの一次摂動の永年方程式にあてはめて

|<ψ_q/2|H'|ψ_q/2>-E^(1)_k  <ψ_q/2|H'|ψ_-q/2> |
| <ψ_-q/2|H'|ψ_q/2>  <ψ_-q/2|H'|ψ_-q/2>-E^(1)_k |
=0

を解くのかなと思ったんですが、見ての通り初めに書いた行列とは全く一致しません。この永年方程式は何が間違っているのでしょうか?


以上の詳しい解説をお願いします。また類似問題を扱ってるサイトなどありましたら教えてください。

サイエンス社 演習量子力学[新訂版] 岡崎誠・藤原毅夫著

p64例題4の解答のついて

下から二番目の式の

[ E^(0)_k   V_0/2  ]
[ V_0/2   E^(0)_k-q ]

という行列があるのですが、これがどこから出てきたのかわかりません。解説では要項(12)を利用しろと書いてあるのですが、
この要項(12)自体、どのように導いたのかわかりません。

自分では

ψ_q/2とψ_-q/2が縮退してる(これもあやしい気がします。ψ_k+qとψ_k-qが縮退してるのか?)のだから、縮退ありの一次摂動の永年方程式...続きを読む

Aベストアンサー

本を持っている事を前提とした質問という事は、本を持っていない人には答えて欲しくないということなのかなぁ。。。

まぁ、記号の雰囲気だけ見た感じでは1次元の結晶に何らかの摂動を入れた場合でも考えているのだろうか。とすると、多分ψ_kとψ_(k-q)が縮退していて、1次の摂動論から最初の行列を出したのではないかなと。

Q昇格、年俸、言われている事が破られる。

相談です
すみません、長文になります。

主人は一昨年転職しました。
面接後に採用が決まり入社前に人事部本部長にお会いし、この会社は実力主義の会社である事、売り上げさえあげれば1年で昇進するのも当然あるという事、それから年俸制の話がありました。
前職での年収を転職先でも求めていた為その話になりましたが、提示された額は50万ダウン程で年俸制に出来るとの回答でした。
ですが結果が求められる会社である為、一年後に売上に応じて年俸制になると入社してから説明されました。

入社半年後に職場の人間関係でトラブルに巻き込まれ、その際このままいけば辞めざるを得ないと上司に相談したところ、売り上げが良かった為に辞められると困ると上司から引き止められました。
相手を転勤させる、そして下半期になる頃に主任にさせるから辞めないでくれと頼まれました。
相手方は色々な方とトラブルになっていた為すぐに転勤になりました。

そして下半期になる頃、突然転勤を言い渡されました。
転勤先となる支店の社員さんのほぼ全員が退職してしまい、前職で地方経験のある主人に行ってほしい事、今年の2月に店長にさせるとの事で、その際に主任にはならず主人は転勤をしました。
その話をされた際入社1年でしたが、年俸制の話はされませんでした。
主人も2月に店長になると必然的に年俸制になる為話はしなかったようです。

そして2月、結局店長にはなれませんでした。
売上は1位になっており、売り上げが落ちた訳ではありません。
ただ他の支店は店長が変わったり等大きく人事異動があったようです。
前職は年収700万円で面接の際に売り上げが良ければ同じくらいになると言われていて十分な売り上げを上げているにも関わらず、年収は400万円まで下がりました。
契約一本の単価も当初の話とは全く違いました。

主人が売り上げの嘘を言っているわけではありません。
主人と家族ぐるみで仲良くさせて頂いている別の上司の方も今回の件は心配して下さっていて、アイツは会社にいいように使われているだけだ。売り上げも1位なのにあり得ない事だと一緒に怒っています。


主人は上に掛け合いましたが、のらりくらり話をかわされているようで、退職の意思を伝えましたが辞められると困る、どうにかするからと言われ結局どうにもなっていません。
しまいには、同じ職種には転職は出来ないぞ、相手先にはいくらでも言えると脅されたようです。

ちなみに最初の話し合いからずっと話をしているのは人事部兼営業部の本部長です。
この人の上はもう社長になってしまいます。

これはどこに訴えでればいいのでしょう?
最後の脅迫はもうパワハラだと思うのですが。。。
年俸制の事も、面接時の話と違うのであれば労基ですか?
主任然り店長云々はどうにもならないかとは思うのですが納得出来ません。
何故売上も低い方々がたくさん店長に上がっているのか。。
実力主義だからと言っていて、この一年半事あるごとに店長にすると色んな場面で言われていたようです。
主人は真面目なのでこのような事になってもお客様第一優先で仕事に邁進しており、お客様の事を考えると辞め時が見つからないと悩んでいます。
主人の希望は給料面を保証してほしい、年俸制にしてほしいと言ったことです。

皆様のお知恵を貸していただけませんでしょうか。
お願い致します。

相談です
すみません、長文になります。

主人は一昨年転職しました。
面接後に採用が決まり入社前に人事部本部長にお会いし、この会社は実力主義の会社である事、売り上げさえあげれば1年で昇進するのも当然あるという事、それから年俸制の話がありました。
前職での年収を転職先でも求めていた為その話になりましたが、提示された額は50万ダウン程で年俸制に出来るとの回答でした。
ですが結果が求められる会社である為、一年後に売上に応じて年俸制になると入社してから説明されました。

入社半年後に...続きを読む

Aベストアンサー

年収分だけ働くようにすれば良いのでは?

「店長」ということは、サービス業でしょうか?
ずっと好成績なら、独立する道もあるのではないでしょうか??

そんな会社でなぜ一生懸命働いているのでしょう?
一生懸命働くのを辞めて、400万円分の貢献をすれば良いのです。

圧力で転職がし辛くなるのは困るので、やはりまずは労働基準監督署ですね。でも労基はあまり当てにならないので、労働組合が会社になければ全国労働組合総合連合にも行きましょう。

また、「裁判の準備だろうか?」と思われる程綿密な証拠と記録を用意してください。転職前に提示されていた待遇、転職後の待遇、今までの売上高矢ノルマ達成率(会社への貢献度)、相談内容、上司に言われた内容、現在までの実際の待遇、タイムシート(無いor改ざんさせられるならご自身でできるだけ記録)...など、証拠となり得る記録を全て書き出し、表などにまとめて書面化しましょう。
それらを持って労基、組合、法テラスなどの無料弁護士相談所に赴き、それらの対応をしたことを伝えながら、「これ以上対応が遅れるようなら、法的手段に出ます」と言う旨を上司や人事に伝えましょう。
ここまですれば、もうバカにされないと思います。
会社が話に応じてきたら、まずは年収700万円以上と昇格を約束して貰いましょう。

負けないでください!!!

年収分だけ働くようにすれば良いのでは?

「店長」ということは、サービス業でしょうか?
ずっと好成績なら、独立する道もあるのではないでしょうか??

そんな会社でなぜ一生懸命働いているのでしょう?
一生懸命働くのを辞めて、400万円分の貢献をすれば良いのです。

圧力で転職がし辛くなるのは困るので、やはりまずは労働基準監督署ですね。でも労基はあまり当てにならないので、労働組合が会社になければ全国労働組合総合連合にも行きましょう。

また、「裁判の準備だろうか?」と思われる程綿密な証拠と...続きを読む

Q力学の数式[F]と[G]の求め方がわかりません。

球形の雨滴が,静止している霧のなかを鉛直に落下しながら,霧の付着
により成長する場合の雨滴の運動について考える。霧は雨滴の表面積に比
例して付着するとする。時刻t=0における雨滴の半径をr₀,落下速度を
V₀とするとき,以下の数式[A]~[G]を埋め,文章を完成させよ。ただし,dm,dr,dt,dv,dPは微小量であるとする。
解答には、途中計算も記すこと。

時刻tにおける雨滴の質量をm,半径をr,水の密度をρ(一定)とすると,
M=(4/3)πr^3ρより,dm=[A]dr -(1)
ここでは、簡単のため,単位時間に単位表面積当たり質量aの割合で霧が
付着し,雨滴が成長すると仮定する。このとき,雨滴の質量変化は,
dm=[B]dt -(2)
となる。(1),(2)よりdmを消去すると,
dr=[C]dt -(3)
なので,時刻tにおける雨滴の半径rは,
r=[D]-(4)
となる。
ここで,鉛直下方をx軸の正の向きにとり,雨滴の時刻tにおける速度を
vとする。重力加速度の大きさをgとし,空気抵抗は無視できるものとし,
雨滴に働く外力は重力のみであると仮定する。このときの雨滴の運動方程式を考える。時刻tにおける雨滴の運動量は、P=mvである。時刻t+dt
における運動量は,時刻t+dtにおける雨滴の速度をv+dv,質量を、m+dm
とすると,
P+dP=[E]-(5)
となる。時刻tと時刻t+dtの間における運動量変化は,その間に外から働
いた外力の力積に等しいので,
dP=mgdt -(6)
である。(5),(6)式より次の運動方程式が得られる。
d(mv)/dt=[F] -(7)
(3),(4),(7)式などを用いることにより,時刻tにおける速度vが求められる。
速度vをr₀,a,t,v₀,g,ρを用いて表すと,以下のようになる。
v=[G]

最後の数式[F]と[G]のところを教えてくださいませんか。

途中まではこんな感じなのでしょうか?
↓↓↓↓

[A]は,両辺を積分してM=(4/3)πr^3ρに元に戻らなければならないので
4πr^2ρ

[B]は,単位時間に単位表面積当たり質量aの割合で霧が
付着し,雨滴が成長すると仮定する。なので
4πr^2a

[C]は,2式を代入してa/ρ

[D]は,両辺積分して
r+C_1=at/ρ+C_2
r=at/ρ+C_2- C_1
初期条件より
C_2- C_1=r_0
よって
r=at/ρ+r_0

[E]は,mv+(dm)v+(dv)m+dmdv

[F]は,2式を代入して
P+mgdt=mv+(dm)v+(dv)m+dmdv
P+mgdt=P+d(mv)+dmdv
d(mv)/dt=mg-dmdv/dt

お願いいたします。

球形の雨滴が,静止している霧のなかを鉛直に落下しながら,霧の付着
により成長する場合の雨滴の運動について考える。霧は雨滴の表面積に比
例して付着するとする。時刻t=0における雨滴の半径をr₀,落下速度を
V₀とするとき,以下の数式[A]~[G]を埋め,文章を完成させよ。ただし,dm,dr,dt,dv,dPは微小量であるとする。
解答には、途中計算も記すこと。

時刻tにおける雨滴の質量をm,半径をr,水の密度をρ(一定)とすると,
M=(4/3)πr^3ρより,dm=[A]dr -(1)
ここでは、簡単のため,単位時間に単位表面積当...続きを読む

Aベストアンサー

[E]

P+dP = (m+dm)(v+dv) = mv + mdv + vdm + dmdv

ですが,最終項は2次の微小量として省けます。

[F]

なかなか悩ましいですね。

d(mv)/dt = mg
mdv/dt + vdm/dt = mg
(2) より,dm = 4πr^2a dt
また,m = 4πr^3ρ/3
∴dv/dt = g - 3av/(ρr)

(4)を考慮して積分することになりますが…orz

Q不確定性原理の説明

大学の講義で不確定性原理についてのビデオをみました。そこで不確定性原理について、
粒子の位置を測定するために、波長が短くエネルギーが大きい波を当てると、運動量が変わってしまう。
運動量を測定するために、波長が長い波を当てると、位置が正確にわからなくなる。
という説明がなされました。この説明だと、もし自分が小さくなって粒子の位置を肉眼で確認できたら、不確定性原理は成り立たないと思います。
不確定性原理の説明として、これは少々違いますよね?初学者にとって分かりやすいかもしれませんが、大学でこの説明はどうかと思います。

Aベストアンサー

ハイゼンベルグの思考実験は、そのビデオのとおりなので、ハイゼンベルグの不確定性原理の説明としては、間違ってはいませんよ。
ただ、波動関数から、導き出される量子力学的な不確定性の説明としては、確かに不充分かもしれません。
ただ、ハイゼンベルグがそのような思考実験を持ちだした理由と言うのもあるので、そのような思考実験を説明するのは、意味があると思います。(初学者向けなわけですから、さらに深く量子力学を学べば、また別の見方が出てくるのはわかるはずです)
物理学には、自然を認識するのに、観測により法則を見出す方法と、自然のメカニズムを解き明かして法則化する方法があります。
簡単にメカニズムがわかれば、当然メカニズムを解き明かした方が良いんですが、自然というのもそこまで単純ではありません。
ハイゼンベルグの場合は、どちらかと言えば観測主義の立場なわけです。
もちろん、メカニズムとしての不確定性も否定していたわけでは無いでしょうが、観測者の立場から不確定性を認識するには、測定方法自体が不確定性を生み出すと言うのは、自然な発想だったと言う事でしょう。
不確定性原理からは、原子の中の電子は、一定の確率で、存在している事になり、運動量が決まっている場合は、どこにいるかはわからないです。(原子の中にいる事はわかります)
これとは、逆に電子は陽子のまわりを一定の軌道でまわっていると主張する考えもあります。
ただ、観測系の不確定性原理から、それを測定する事は出来ないです。
波動関数からは、もともと電子の運動量と位置はゆらいでいると言えるので、観測するまでは不確定であると主張できるので、この場合は一定の軌道でまわっているという状態になる可能性もあれば、存在確率のゆらぎで不確定な状態にある可能性もあります。
ただ、ここら辺は、観測出来ないわけですから、どう考えても良いとも言えます。(誰も確認出来ない)
観測出来ないならば、どちらでも結果は同じと考えれば、それでも良いとも言えますね。(あくまで解釈の問題で、計算結果は同じです)
少なくとも、どちらの立場でも、電子は原子の中にあると言う事しか言えないです。
基本的には、そのビデオだけで、量子力学が理解できるわけでは無いです。
むしろ、その思考実験から、波動関数にどう結び付けるかが、授業の要になるでしょう。

ハイゼンベルグの思考実験は、そのビデオのとおりなので、ハイゼンベルグの不確定性原理の説明としては、間違ってはいませんよ。
ただ、波動関数から、導き出される量子力学的な不確定性の説明としては、確かに不充分かもしれません。
ただ、ハイゼンベルグがそのような思考実験を持ちだした理由と言うのもあるので、そのような思考実験を説明するのは、意味があると思います。(初学者向けなわけですから、さらに深く量子力学を学べば、また別の見方が出てくるのはわかるはずです)
物理学には、自然を認識するの...続きを読む

Qニュートン力学と不確定性原理(*≧H≦)よろちくなのら♪♪(∪≦*)

量子効果ゎプランク定数程度のスケールオーダーで起きるケド、
あたしの記憶だとファインマン物理の量子んとこに、
ニュートンでも不確定性原理が成立するようなこと書ぃてあった気がするヵらご質問しまあす♪

とりあぇず、
ニュートンで位置と運動量ゎ正確に両方はかれるょね??
つまり、ばらつきがなぃという意味で
ばらつきあるのかなぁ

別の言ぃ方すれば、ニュートンでゎ不確定性原理が不成立??
なぜプランク定数程度のスケールオーダーで量子効果がでるか意味不になってきたwwwwww^q^←

あたしゎサクライさんのアドバンスとモダンと砂川さんので勉強したょ*
(*≧H≦)よろちくなのら♪♪(∪≦*)

Aベストアンサー

非常に厳密にいえば, ニュートン力学でも「位置と運動量の両方を同時に正確に測ることはできない」とは言える. ただし, 測りたい値に対して十分小さい誤差であるなら「誤差なく測れる」と言っても大した問題にはならない.
しかし, なぜ「普通の日本語」を書こうとしないのか. 潜在的な回答者をバカにしてる?


人気Q&Aランキング

おすすめ情報