この二つの値は等しくなると思うのですが、実際に円盤にくくりつけたおもりを落とすという実験結果からは力積のモーメントの方が大きい値を出しました。
これは何が原因なんでしょうか?
摩擦力が関係していると思うのですが

A 回答 (1件)

「円盤にくくりつけたおもりを落とすという実験結果」の中身をもっと具体的に書いていただけないでしょうか。


 
    • good
    • 0
この回答へのお礼

すみません。
自己解決しました。

お礼日時:2009/05/19 12:44

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qなぜ熱膨張係数は物質により異なるのでしょうか?

先日、大学の実験で金属の熱膨張係数を調べたのですが、実験後なぜ熱膨張係数は物質によって異なるのか、またなぜ熱膨張係数は温度変化するのかを調べなさいといわれました。
大学の図書館などでいろいろ調べてみたのですが、そのことに関して記述されている本がなかなか見つからなくて困っています。
もし知っている方がいましたら詳しく教えてください。
本の名前やサイトでも結構ですのでお願いします。

Aベストアンサー

固体の中で原子は整然と並んで結晶を作っているわけですが、個々の原子は、結晶の中での安定な位置にとどまろうとしています。ですから、大雑把にいえば、原子同士はバネでつながれているようなものです。有限温度では熱エネルギーのために原子は安定点を中心に振動しています。

ここで、原子同士をつないでいるバネが、力の大きさが変位の絶対値に比例する理想的なバネだったら熱膨張は起こらないのですが、実際の原子同士の相互作用は、安定点から同じだけ離れたとしても、原子同士が近づく方向に動いたときに働く力の方が、原子同士が離れた方向に動いたときに働く力よりも大きくなっています。ファンデルワールス力を与えるレナードジョーンズポテンシャルを御存知でしたら、このことが納得できるのではないかと思います。

したがって、温度が上昇して熱振動の振幅が大きくなると、原子間の平均の距離は(近づくとより強い力がかかるわけですから)、長くなります。要するに温度が上がると、固体は膨張します。これが熱膨張の原因です。

熱振動の振幅が小さければ小さいほど、バネは理想的なバネに近づいていきますから(振り子の振動を解析するときに、振幅が小さければ単振動とみなしてよいのと同じ)、熱膨張係数は温度を下げると小さくなって、絶対零度では零になります。

原子間の相互作用(要するにバネの力)を与えるポテンシャルの詳細は、当然、構成元素や結晶構造によって変わりますから、熱膨張係数は物質によって変わります。

でも、世の中には変な物質があって、磁気的な体積変化と熱膨張がキャンセルして、温度を変えても長さがほとんど変わらないもの(インバーと呼ばれています)や逆に温度を「下げる」と体積が増えるものまであります。

固体の中で原子は整然と並んで結晶を作っているわけですが、個々の原子は、結晶の中での安定な位置にとどまろうとしています。ですから、大雑把にいえば、原子同士はバネでつながれているようなものです。有限温度では熱エネルギーのために原子は安定点を中心に振動しています。

ここで、原子同士をつないでいるバネが、力の大きさが変位の絶対値に比例する理想的なバネだったら熱膨張は起こらないのですが、実際の原子同士の相互作用は、安定点から同じだけ離れたとしても、原子同士が近づく方向に動いたとき...続きを読む

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q慣性モーメントの利用

大学で慣性モーメントについて学びました。そこで気になったのが、実際の利用方法です。
ゴルフクラブやバット、ラケットなどの品質向上などに利用することはすぐに思いついたんですが、他には何に対して、どのように使われているのでしょうか?

Aベストアンサー

専門家ではない人には、慣性モーメントは分かりにくいと思いますが、実世界ではかならず大きさが存在するのでとても役に立ちます(というか考慮しないと困ります)。
例えば、
材料力学 応力の計算
振動工学 二次自由度系の計算
制御工学 アーム制御
あたりで必ず使います。

QKer(核)やIm(像)の意味がわからない。

Aはm×n行列、xはn次ベクトル、bはm次ベクトル
このとき
KerA={x∈Rn|Ax=0}
ImA={Ax∈Rm|x∈Rn}と定義する。
※Rn,Rmのn,mはRの右肩にあります。

この定義のいみがよくわかりません。
よろしくお願いします。

Aベストアンサー

ベクトルxは、
  b=Ax
という対応によって、別のベクトルbにうつされます。
このとき、b=0になるのはどんな場合かを考えてみます。
x=0の場合は、b=0です。
しかし、Aの中身によっては、x≠0なのに、b=0
になる場合があるでしょう?
b=0になるような、xをすべて集めた集合を考え、
その集合をKer(A)と書いているのです。

こんどは、Imのほうですが、bを好き勝手に決めたとして、
 b=Ax
となるような、xがいつでもきめられるでしょうか?
どんなbに対しても、連立一次方程式が問題なく解ける場合
(解が一通りしかない場合)もありますが、解がない場合だって
ありますよね? これも、Aの中身によります。
そこで、xをいろいろ変えてみて、でてくるbを
すべて集めてできた集合を、Im(A)とかきます。

なれないうちは、
Ker(A)は、連立方程式Ax=0の解xの集合、
Im(A)は、Ax=bが解ける場合のbの集合
とでも理解しておけばいかがですか?
本当は、方程式ではなくて、ベクトル空間の概念ですけども。

ベクトルxは、
  b=Ax
という対応によって、別のベクトルbにうつされます。
このとき、b=0になるのはどんな場合かを考えてみます。
x=0の場合は、b=0です。
しかし、Aの中身によっては、x≠0なのに、b=0
になる場合があるでしょう?
b=0になるような、xをすべて集めた集合を考え、
その集合をKer(A)と書いているのです。

こんどは、Imのほうですが、bを好き勝手に決めたとして、
 b=Ax
となるような、xがいつでもきめられるでしょうか?
どんなbに対しても、連...続きを読む

Q回転運動のエネルギー

大学に入って初めて剛体の力学について習ったのですが、高校の物理と違ってよく分かりません。
回転運動のエネルギーを求める公式とその証明を教えて下さい。お願いします。

Aベストアンサー

回転運動のエネルギーの証明ということですが
回転運動といっても基本的には運動エネルギーなのです。ある軸を中心に剛体がくるくる回っている時の
エネルギーは軸の周りの慣性モーメントIとして
1/2Iω^2です。これの証明は、まず剛体の各微小部分
を考えます。その各微小部分(質量Δm)の運動エネルギーは
1/2Δmv^2=1/2Δm(rω)^2となります。v=rωというのは微小部分の速度ですが、その微小部分が回転軸からr離れていて、そして剛体は角速度ωでまわっているからです。
軸から距離r+Δrのところにある微小部分なら、その速度は(r+Δr)ωです。
それで、微小部分の運動エネルギーを全て加えれば、
それが結局回転のエネルギーということになります。
U=Σ1/2Δmv^2=Σ1/2Δm(rω)^2=1/2(ΣΔmr^2)ω^2

ここで、ΣΔmr^2というのは、軸から距離rはなれたところの微小部分の質量Δmに、その軸からの距離rの2乗をかけて、それを剛体のあらゆる微小部分について加えたということであり、それは結局軸の周りの慣性モーメントを意味します。I=ΣΔm(r)r^2よって
U=1/2(ΣΔmr^2)ω^2=1/2Iω^2となります。

回転運動のエネルギーの証明ということですが
回転運動といっても基本的には運動エネルギーなのです。ある軸を中心に剛体がくるくる回っている時の
エネルギーは軸の周りの慣性モーメントIとして
1/2Iω^2です。これの証明は、まず剛体の各微小部分
を考えます。その各微小部分(質量Δm)の運動エネルギーは
1/2Δmv^2=1/2Δm(rω)^2となります。v=rωというのは微小部分の速度ですが、その微小部分が回転軸からr離れていて、そして剛体は角速度ωでまわっているからです。
軸から距離r+Δrのところにある微小部分な...続きを読む

Q円柱モーメントと弾性エネルギー

いつもお世話になっております。申し訳ありません。

針金をねじったときの弾性エネルギーを考えるという問題です。
下端をφねじった状態で必要なモーメントが、N(φ)=πna^4*φ/2Lのとき、
「さらにdφだけ回すにはdφ倍だけの仕事が必要である。
 これをφについて0からΦまで積分して…」
とありました。
なぜ「dφ倍」なのでしょうか。
例えばdφ/φ倍とかなら分かる気がするのですが…。

どうか御教授お願いいたします。

Aベストアンサー

高校生にも解る考え方。

一般に系の仕事(エネルギー)は、E=Int[0,R]F(x)*dxと書けます。
これを具体的に回転系で考えると、回転軸からの距離をrとして、N=r*F、x=r*φ。よってF=N/r,dx=r*dφ、R=r*Φとおけば範囲は[0,Φ]。
これを元の仕事の式に代入していけば、E=Int[0,Φ]N(φ)*dφとなるのは明らかでしょう。

Q静電容量の測定方法

いちばん簡単にコンデンサの静電容量を測る方法を教えてください。
やはり、RC回路でしょうか?
あまり高価な測定器などは用意できません。

よろしくお願いします。

Aベストアンサー

どの程度の容量を持つコンデンサーをどの程度の精度で測定したいのですか?
数PF~数100PF程度であればLC共振の原理を利用する方法があります。その際、のLの値は既知のC(例えば100PF+-5%のC)とかと共振させ測定します。
ストレー容量を補正する為には被測定容量を接続した際に変化する共振周波数の変化を測定し算術計算で容量を求めます。その際、あらかじめ被測定容量に近い容量をあらかじめ接続しておくことをお勧めします。理由は感度曲線がシビアになる為です。

0.001uF~1uF程度であれば数KHz~数10KHzの周波数の信号源を使用して既知の容量と既知の抵抗を使用しブリッジ回路を構成しディップ周波数を測定しおなじく算術計算で求めます。 この際、平衡入力の電圧計もしくは平衡出力端子がある発信器が必要となります。 この際も測定回路のストレー容量(シールド線や測定器の入力容量)を補正する必要があります。

数uF以上の容量(電解コンデンサー等)測定は商用周波数を使用しての測定も可能ですが、内部抵抗の影響を考慮して下さい。(結構この誤差が大きく出て来ます。)

どの程度の価格から高価なのか議論の余地がありますが、最近は市販のLCRメーターが数10万円で入手可能です。しかし、LCRメーターで求めた値がそのまま真の値を示しているとは限りませんので要注意です。(実際にLCRメーターで測定する際測定周波数を変えて測定すると表示される容量値が変わります。)この手の測定は結構奥が深いですよ。
でも、回路自体は単純な2端子網か4端子網なので計算は簡単です。要は浮遊容量や直列抵抗等がその数式の中に含まれているか否かです。

どの程度の容量を持つコンデンサーをどの程度の精度で測定したいのですか?
数PF~数100PF程度であればLC共振の原理を利用する方法があります。その際、のLの値は既知のC(例えば100PF+-5%のC)とかと共振させ測定します。
ストレー容量を補正する為には被測定容量を接続した際に変化する共振周波数の変化を測定し算術計算で容量を求めます。その際、あらかじめ被測定容量に近い容量をあらかじめ接続しておくことをお勧めします。理由は感度曲線がシビアになる為です。

0.001uF~1uF程度であ...続きを読む

Q3枚の偏光板のこと

先日偏光板を使った実験をして、2枚の偏光板の透過容易軸を直交させると光を通さないということがわかっりました。
この原理はここの昔の質問を見て理解できたのですが、なぜこの2枚の偏光板の間にもう1枚の偏光板を斜め(45度)に入れると見えるようになるのか原理がわかりません。

一応ここの掲示板で探しては見たのですが、回答となるようなことが見つかりませんでした。(見落としたのかもしれませんが...)
詳しく教えてください。
お願いします。

Aベストアンサー

>補足です
No.1および2の説明について, 誤解があるようなので, 補足します.
まずここでは, 偏向板の組み合わせによる光の透過の特性の「原理」を問題にしているので,偏向板の理想化された特性を承認して議論しないと話がおかしくなる危険があります.

[前提]1枚の偏向板は特定の振動方向(透過容易軸)を1つだけ持ち,当たった光のうち,その固有の振動方向(その方向の直線偏光)の成分のみを通し, その振動方向を変えない.(方解石などのいわゆる複屈折(速度の異方性とそれに伴う偏光面の回転等)の話はここでは考えなくてよい.)


注意1)実際の偏向板では必ず透過の際に理想的でないことによる損失がありますが,原理的な(理想)透過率の話をする時は,損失を無視できるとして話をします.
注意2)偏向板を透過する際,透過光は入射光に比べて任意の位相のずれが加わっていても(ここでの議論には影響せず)構わない.つまり,透過光と偏光板を通らない光との干渉といった話の場合だと,偏光板の厚さや平均の屈折率といった絶対的な位相のずれを問題にする必要があリますが,ここでは透過光のみを問題にしているので,透過光全体に上の理由以外の原因が仮にあって位相のずれが生じたとしても結論には影響しない.
注意3)これは実は最も誤解されやすいところなのかも知れませんが,偏向板の許す振動方向(透過容易軸)と角θだけ傾いた振動成分の光は正射影を考えればわかるように透過光の振幅は0ではなくcosθ倍だけ通ります.エネルギーではcos^2θ倍で,それと直交する方向でみると振幅sinθ倍,エネルギーでsin^2θ倍で,もちろんエネルギー保存はcos^2θ+sin^2θ=1 で成立します(理想的偏光板のとき).

このような前提を承認いただいた上で, 補足をしますと,
@任意の(直線)偏光は異なる方向の直線偏光や互いに逆回りの2つの円偏光を基底として分解でき, それらの適当な重ね合わせで表現できる.
ベクトルのイメージでとらえれば良いのですが, 光の(電場)ベクトルを適当な別の基底を持ってきて表現可能という話です.

先の話で Y軸方向の直線偏光をベクトル(0,2)のように書きましたが, より正確には時間依存性も含めて(ω:角振動数, t:時刻, 初期位相は簡単のため0とする)

(0,2)*cosωt=(-1,1)*cosωt + (1,1)*cosωt <== E_y[Y軸方向]=E_-[y=-x方向] + E_+[y=x方向] の形

と書くべきだったかも知れません.
>特定の方向の振動成分を選び,しかもそれを打ち消す他の成分をカットすることになって,
という記述は, 上のE_- と E_+ が3枚目の(X軸方向のみを通す)偏光板に入射したとき, E_- と E_+ が「X軸方向に関しては任意の時刻tで完全に打ち消しあう」という話です. ここで,注意2)に触れた位相のずれがあっても E_- と E_+ に等しく生じるので, 干渉の条件は影響を受けません. (注)E_- と E_+ が"位相が180度違っている"と言うと危険です. 両者を加えると, X成分は打ち消しあって0ですが,Y成分は2倍になります.但しY方向の振動成分は3枚目を通れないので,ここでは特に問題にしなくてよかったわけです.
ところが2枚目の45度傾けた偏光板を入れると,上のE_+ のみ通ってE_- は遮断されるので...となります.

もちろん,基底の取り方は任意ですが,今の議論に都合のよいものは上述の y=-x方向 と y=x方向 の2つの直線偏光への分解です.

>補足です
No.1および2の説明について, 誤解があるようなので, 補足します.
まずここでは, 偏向板の組み合わせによる光の透過の特性の「原理」を問題にしているので,偏向板の理想化された特性を承認して議論しないと話がおかしくなる危険があります.

[前提]1枚の偏向板は特定の振動方向(透過容易軸)を1つだけ持ち,当たった光のうち,その固有の振動方向(その方向の直線偏光)の成分のみを通し, その振動方向を変えない.(方解石などのいわゆる複屈折(速度の異方性とそれに伴う偏光面の回転等)の話はここで...続きを読む

Q慣性モーメントの単位

慣性モーメント単位が kgf・m^2 と表されているのですが、なぜ kgf なのでしょうか?
また、単位変換して kg・m^2 にするにはどうすればよいのでしょうか?
どなたか、よろしくお願いします。

Aベストアンサー

SI単位系では、慣性モーメントの単位はkg・m^2です。
ですが、重量単位系:力をW(kgf)として、力の単位にN(ニュートン)を用いないで慣性モーメントを定義する場合にkgfが現れます。それでも、慣性モーメントの単位はkgf・m・s^2です。ではkgf・m^2とは何なのかというと、GD2(ジーディースクエア)といって、正式には慣性モーメントではないが慣性モーメントの前段階のような値、ということです。例えば、円柱の上下方向の慣性モーメントはSI単位系では1/2MR^2(M:質量、R:半径、単位はkg・m^2)ですけど
これをGD2で表すと、1/2WD^2(W:重量、D:直径,単位はkgf・m^2)となります。重量は質量と値は等しいですが"質量"ではなく力です。つまり、質量に重力加速度がかかっています。ですから、慣性モーメントにするにはgで割る必要があります。また、直径の2乗で定義されてるから、半径の2乗に直すためさらに4で割ります。
それで、単位がkgf・m^2
からkgf・m・s^2となるわけです。ですが、相変わらず
kgfが入っているのでこれをSI単位に変換するには、
重量M=質量W(ただし値のみ。単位は異なる)であること
を利用し、1/2WD^2[kgf・m^2]をW→M、D→Rとし、4で割って、改めて単位をkg・m^2と置けばいいのです。他の慣性モーメントについても、全ての項がWD^2となっているから、同様に4で割り単位をkgf・m^2→kg・m^2とするだけです

参考URL:http://www.keiryou-keisoku.co.jp/databank/kokusai/torukusi/torukusi.htm

SI単位系では、慣性モーメントの単位はkg・m^2です。
ですが、重量単位系:力をW(kgf)として、力の単位にN(ニュートン)を用いないで慣性モーメントを定義する場合にkgfが現れます。それでも、慣性モーメントの単位はkgf・m・s^2です。ではkgf・m^2とは何なのかというと、GD2(ジーディースクエア)といって、正式には慣性モーメントではないが慣性モーメントの前段階のような値、ということです。例えば、円柱の上下方向の慣性モーメントはSI単位系では1/2MR^2(M:質量、R:半径、単位はkg・m^2)ですけど
これをGD2...続きを読む

Q線膨張率

先日、大学の実験で金属の熱膨張係数を調べたのですが、金属の線膨張率は極低温から融点付近まででどのような変化をするか調べよと言われ図書館やネットなどでいろいろ調べてみたのですが、そのことに関して記述されているものが見つからずに困っています。
もし知っている方がいましたら詳しく教えてください。
本の名前やサイトでも結構ですのでお願いします。

Aベストアンサー

各温度ごとの線膨張率(線膨張係数)が知りたいという事でしょうか。
それでしたら、下記文献などが参考になろうかと思います。
理工系大学の図書館なら、置いてあるでしょう。

 書名:  伝熱工学資料(改訂第4版) 日本機械学会 発行

2点ですが、記載例を挙げておきましょう。

 純金属の線膨張率 α (K^-1)
--------------------------------------------------------------
 金属の種類      鉄(Fe)        銅(Cu)
--------------------------------------------------------------
温度 150 K     7.9 * 10^-6      12.8 * 10^-6
    250 K     11.0 * 10^-6      15.9 * 10^-6
    300 K     11.9 * 10^-6      16.6 * 10^-6
    600 K     15.1 * 10^-6      18.9 * 10^-6
    800 K     16.2 * 10^-6      20.3 * 10^-6
    1000 K     16.6 * 10^-6      22.4 * 10^-6
    1200 K     23.3 * 10^-6      24.9 * 10^-6
融点 Tm      Tm = 1810 K      Tm = 1357.6 K
--------------------------------------------------------------
一般的な合金についても記載されていますが、温度範囲がもっと荒っぽいです。

各温度ごとの線膨張率(線膨張係数)が知りたいという事でしょうか。
それでしたら、下記文献などが参考になろうかと思います。
理工系大学の図書館なら、置いてあるでしょう。

 書名:  伝熱工学資料(改訂第4版) 日本機械学会 発行

2点ですが、記載例を挙げておきましょう。

 純金属の線膨張率 α (K^-1)
--------------------------------------------------------------
 金属の種類      鉄(Fe)        銅(Cu)
-------------------------------------------------------...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報