親子におすすめの新型プラネタリウムとは?

π-π相互作用やπ結合は、両方ともπ軌道が関係している働きだとは思いますがその違いがわかりません。

π-π相互作用はグラファイト間や芳香族化合物間に働く力のようですが、Wikipediaで調べてみるとπ-π相互作用は「2つの芳香環がコインを積み重ねたような配置で安定化する傾向がある」とあります。これは結合ではなくてファンデルワールス力のような働きによって?結合をせずに安定するようです。

一方π結合はp_z軌道が重なり合って一つの電子を共有している状態、とあります。
二つの働きはどちらともπ電子が関与しているようですが、どうして一方は結合をせずに分子間を安定させる働きをし、もう一方は結合をつくるのでしょうか。

ご教示お願いします。

A 回答 (2件)

π結合は共有結合です。


すなわち2原子間で電子対を共有します
この時共有する電子対が一対であれば
σ結合となり強固に結合します
2対~3対になると,簡単に言えば反発して一所に収容できず
一対のσ結合と1~2対のπ結合を生じます
π結合は互いの原子核から離れて存在する確率が高いため
結合は切れやすく,一般に反応性に富んでいます
付加反応などはこの典型的な例で
π結合のみが切れ,σ結合が残ったものと言えます

π-π相互作用は
上記のように形成された分子
その分子間に働く作用で分子間力の一種です
π結合は前述の通り弱い結合ですから
原子核からゆるく支配され
比較的広い空間を占めます
従って確率論的に電子の偏りが期待され,
結果として双極子となって互いに引き合うのです
これをπ-π相互作用といいます
    • good
    • 0

おっしゃっているグラファイトのπ-π相互作用はグラファイトの層状構造において層と層との間の相互作用になります。


↓のオレンジとブルーの層の間に働く力ですね。
http://en.wikipedia.org/wiki/File:Graphite-layer …
この層間は335pm(ピコメ-ター)≡3.35?離れており、ベンゼン環型の層内の炭素-炭素距離142pm≡1.42?とはかなり性質が違います。
グラファイトに「潤滑剤」としての作用があるのはこの層間に水が入っているためで、宇宙空間では使用出来ません。
また様々な原子やイオンをこの層間に入れることができ、インターカレーションと呼ばれます。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q芳香環との静電的な相互作用について

アミノ酸の研究をしている理系大学生です
芳香環の静電的な相互作用のとりえ方について分からない点があります

ベンゼン環は電離、分極も生じておらず、疎水性が高い分子です
疎水性が高いといことは水溶媒においても水分子と水素結合を介さないはずです

しかし、ベンゼン環は陽イオンなどとπ-カチオン相互作用や、π-π相互作用を取り得ることが分かりました

どちらも静電的な相互作用のはずなのに一方はとりえて、他方はとりえないのはなぜでしょうか

ベンゼン環は分極は生じていないですが、π電子雲と呼ばれる電子がベンゼン環の上下方向に存在していて、この電子雲が関係しているのだろうと思うのですが、よくわかりません

詳しく教えていただけないでしょうか

Aベストアンサー

基本的には、質問者さんがお考えになっている通り、ベンゼン環や他の芳香環は疎水性が高いものです。
たとえば、ベンゼンを水に混ぜ込んだ場合、相分離してしまってベンゼンと水はお互い弾きあうでしょう。これは、水は水同士で相互作用(水素結合)した方がはるかにハッピーなので、あえてベンゼンを中に入れたがらないためです。質問者さんが描かれている通り、ベンゼンと水の相互作用(水素結合なり双極子相互作用なり分散力なり・・・)は弱いため、水分子間のネットワークを壊してまでベンゼンとなじむ必然性がありません。
この現象を、我々は疎水性相互作用と呼びます。実際に相互作用の大半を担っているのは、水同士の強い相互作用であって、別に疎水性化合物同士で強い相互作用をするということではありません。
ようするに、水が大量にいる(溶媒のように)なっている場合、こうした非常に弱い、芳香環と水(あるいは他のプロトン源)の相互作用は無視しうるほど弱いものです。ですが、有機溶媒の中、タンパク質分子の中や、高分子の網目の中、あるいは結晶の中のように、水がほとんど存在しない状況にあるベンゼン環はどうでしょうか。
質問者さんが書かれているとおり、芳香環には上下にパイ電子があります。これは電子というくらいなので、正電荷と相互作用します。真上に近い位置にプロトンなりカチオンなりを置いた場合、静電的に引き合うでしょう。実際に、ベンゼン環の真ん中は負に帯電していることは知られており、ちょうど良い位置に存在する正電荷と引力相互作用を生じ舞ます。アルコールなどの水素原子は正に分極しているため、正電荷よりは程度は弱いでしょうが、ベンゼン環と静電相互作用しうるでしょう。
なお、この手の現象で有名なものに、アントラセンなどのアセン類の結晶構造があります。隣の分子のC-H結合が、別の分子のパイ電子系に向かって位置する形で結晶化します。これは、C-H結合がわずかにH+に分極するため、C-H-パイ相互作用を起こすからです。
なお、パイ-パイ相互作用はまた別の話です。質問者さんはベンゼンの水素結合の例で出していますが、間違いです。これは水素結合のような通常の静電相互作用とは違うものとされていて、誘起双極子間の相互作用(いわゆる、分散力、ロンドン力と呼ばれるもの)として説明されています。ちょっとわかりにくいのですが、これもパイ電子に起因しています。隣り合う二個のベンゼン環を考えた場合、パイ電子の分布は瞬間ごとにゆらいでいます。一個のベンゼン環のパイ電子のゆらぎは、隣のベンゼン環のパイ電子分布に影響し、結果として瞬間的に電荷同士の引き合いが生じます。これが延々と繰り返されて、両者の間に引力が生じるというものです。
なお、上述したように、普通の芳香環を混ぜた場合は、C-H-パイ相互作用する形、ようするに両者は積みかさらない形が一般には有利ですが、芳香環が大きくなったり、何かむりくり積み重なるような工夫をすると、パイ-パイ相互作用した構造になります。

基本的には、質問者さんがお考えになっている通り、ベンゼン環や他の芳香環は疎水性が高いものです。
たとえば、ベンゼンを水に混ぜ込んだ場合、相分離してしまってベンゼンと水はお互い弾きあうでしょう。これは、水は水同士で相互作用(水素結合)した方がはるかにハッピーなので、あえてベンゼンを中に入れたがらないためです。質問者さんが描かれている通り、ベンゼンと水の相互作用(水素結合なり双極子相互作用なり分散力なり・・・)は弱いため、水分子間のネットワークを壊してまでベンゼンとなじむ必然性...続きを読む

Q共役の長大=長波長シフト?

芳香族多環化合物で、π電子共役系が伸びることによってなぜHOMO-LUMO差が縮まるのかがわかりません。
π電子共役系が伸びるとUV吸収スペクトルの吸収極大は長波長シフトすることは実験的にわかります。そして、長波長シフトはHOMO-LUMO差が縮まることによって引き起こされることも理解できますが、なぜHOMO-LUMO差が縮まるのかがわかりません。
なるべく量子化学に踏み込まずに、単純に説明できる方がいらっしゃいましたらお願いします。

Aベストアンサー

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系の4つの原子の、π結合にあずかる4つのp軌道について、
それぞれ2個同士で軌道の重なりを考えます;


↑        ─ πab*           ─ πcd*
|      /   \           /   \  
|     /      \        /      \  
┼ 2p─          ─2p 2p─          ─2p
|     \      /        \      /
|      \   /           \   /
|         ─ πab           ─ πcd

   Ca         Cb    Cc         Cd
 (Ca~Cdはそれぞれ炭素原子、πab・πab*はそれぞれCa・Cbのp軌道の
  重なりで生じた結合性軌道・反結合性軌道。πcd・πcd*も同様)

次に、このπab・πab*とπcd・πcd*との間の軌道の重なりを考えます。
このとき、先程のp軌道同士の場合に比べると、軌道の重なりは小さいため、
エネルギー準位の分裂幅も小さくなります(因みに、重なり0→分裂幅0);

                 _π4
E            /       \
↑  πab* ─                ─ πcd*
|           \       /
|                ̄π3

|               _π2
|           /       \
|   πab ─               ─ πcd
|           \       /
                  ̄π1
   Ca         Cb    Cc         Cd

 (元のp軌道は省略、そのエネルギー準位は左端の『┼』で表示)


この結果、Ca~Cdの炭素上にπ1~π4の4つの軌道ができます。
元のp軌道よりエネルギー準位の低いπ1・π2が結合性軌道(π2がHOMO)、
高いπ3・π4が反結合性軌道(π3がLUMO)になります。
(軌道が重なると、「重なる前より安定な軌道」と「重なる前より不安定な軌道」が
 生じますが、このように、必ずしもそれが「結合性軌道と反結合性軌道となる」
 とは限りません;その前に大きな安定化を受けていれば、多少不安定化しても
 結合性軌道のまま、と)

このように考えれば、それぞれのHOMOとLUMOのエネルギー差は、CaとCbの2つの
π電子系で生じた時に比べ、Ca~Cdの4つのπ電子系の方が小さくなることが
理解していただけるのではないかと思います。


<余談>
このようにして共役系が延長していくと、軌道の重なりによる安定化幅はさらに小さく
なっていくため、「軌道」というよりは「電子帯(バンド)」というべきものになります。
また、HOMO-LUMO間のエネルギー差も縮小し、常温で励起が起こるようになります。
これによって、芳香族ポリマーや黒鉛などは電導性が生じているわけです。

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q量子収率とは???

量子収率という言葉はよく聞くのですが、いまいちよく分かりません。

どなたか分かりやすくご説明して頂けないでしょうか?

お願いします。

Aベストアンサー

量子収量の定義は「光化学反応において、吸収した光子に対する生成物の割合」です。例えば、反応物に光を照射し、そのうち1molの光子を吸収して0.5molの生成物を得た場合、量子収率は50%ということになります。光子のmol数は光強度、振動数、照射時間、プランク定数、アボガドロ数から計算されます。

Qわりと緊急です。再沈殿の原理について

再沈殿の原理について知りたいです。ネットで調べてもあまり良いものがなくて、困っています。自分の能力不足なのかもしれませんが・・。再結晶とはまた違うものなのでしょうか?高分子の関係のものと、それとはまた違うものとあるように解釈しているのですが、できれば両方とも教えて欲しいです。

Aベストアンサー

混合溶媒における再結晶と似ています。
溶液に別の溶媒を混ぜて溶解度を低下させて、目的物を沈殿させます。

混合溶媒における再結晶の場合は、結晶が出始めるか出始めないかギリギリのところで溶媒の追加をやめなければなりませんが、再沈殿の場合は溶解度を低下させる溶媒をもっと沢山加えます。

Q“ in situ ” とはどういう意味ですか

科学の雑誌等で、“ in situ ” という言葉を見ますが、これはどういう意味でしょうか。
辞書では、「本来の場所で」、「もとの位置に」などと意味が書いてありますが、その訳語を入れても意味が通りません。
分かりやすく意味を教えていただけないでしょうか。

Aベストアンサー

「その場所で」というラテン語です(斜体で書くのが一般的です)。

in vitroとかin vivoと同じように、日本語のなかでも訳さないでそのまま「イン シチュ」あるいは「イン サイチュ」というのが普通でそのほうがとおりがいいです。うまい訳語がないですし。

生物学では、in situ hybridizationでおなじみです。この意味は、染色体DNAやRNAを抽出、精製したものを試験管内、あるいはメンブレンにブロットしたものに対してプローブをhybridizationさせるのに対比して、組織切片や組織のwhole mount標本に対してプローブをhybridizationすることをさします。
これによって、染色体上で特定のDNA配列を検出したり、組織標本上で特定のRNAを発現する細胞を検出したりできます。生体内の局在を保った状態でターゲットを検出するということです。

化学反応、酵素反応などでは、溶液中の反応のように、すべての役者が自由に動き回れるような系ではなく、役者のうちどれかがマトリックスに固着していて、その表面だけで反応がおこるようなケースが思い浮かびます。

「その場所で」というラテン語です(斜体で書くのが一般的です)。

in vitroとかin vivoと同じように、日本語のなかでも訳さないでそのまま「イン シチュ」あるいは「イン サイチュ」というのが普通でそのほうがとおりがいいです。うまい訳語がないですし。

生物学では、in situ hybridizationでおなじみです。この意味は、染色体DNAやRNAを抽出、精製したものを試験管内、あるいはメンブレンにブロットしたものに対してプローブをhybridizationさせるのに対比して、組織切片や組織のwhole mount標本に対...続きを読む

Qπ-π*吸収極大波長の長波長シフト

π-π*遷移に基づく吸収極大波長は溶媒の極性が大きくなると、長波長側へシフトするのでしょうか?短波長側にシフトするという説もあるのですが、どちらが真実なのでしょうか?

Aベストアンサー

長波長シフトです。

π-π*遷移後の電子状態は、基底状態に比べてより分極しているため(これはわかりますよね?)、基底状態よりも周囲の極性溶媒と相互作用し、安定化するからです(n-π*遷移の場合とちょうど逆です)。

お書きになっている短波長にシフトするという説は、もしかしたら分子構造(あるいは分子を取り囲む特殊な環境)に依存したものではないでしょうか?

Q融点とガラス転移温度の違い

融点とガラス転移温度の違いが良く理解できません。分かりやすく教えてください。

Aベストアンサー

高分子やってるものです。おそらく質問にでてくる融点は普通いわれている融点ではなく、高分子特有のTmといわれているほうの融点ですよね?
板ガムを考えていただけるとわかりやすいと思います。ガムってそのまんまだと引っ張ってもぶちぶちきれちゃいますよね?でも口の中でかむとひっぱっても伸びるようになります。この引っ張っても伸びる性質に変わる温度が高分子における融点です。次にガムを寒いところもしくは冷凍庫に入れてみてください。常温のガムは折り曲げてもたたまれるだけなのですが、低温におかれたガムを折り曲げようとすると割れてしまうと思います。このぱきぱきの状態になってしまう温度がガラス転移温度です。
食品保存容器とかラップに耐熱温度がかかれていると思いますが、よくみるとなぜか上と下の両方の温度限界がかかれていると思います。上の方の温度限界(融点)になると溶けてしまうのはまあ想像がつくのですが、下の方の温度限界(ガラス転移温度)になるとぱきぱきになって容器が割れてしまうので書かれているのです。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

QWord 文字を打つと直後の文字が消えていく

いつもお世話になっています。
Word2000を使っているものです。
ある文書を修正しているのですが,文章中に字を打ち込むと後ろの字が消えてしまいます。
分かりにくいですが,
「これを修正します。」
という文章の「これを」と「修正します。」の間に「これから」という単語を入れたときに,その場所にカーソルを合わせて「これから」と打つと,
「これをこれからす。」
となってしまいます。
他の文書では平気です。
何か解決する方法があれば教えて下さい。

Aベストアンサー

入力モードが「挿入」(普通の入力)から、「上書き」になってしまっているのだと思われます。
キーボードに[Insert]というキーがあると思いますので、1度押してみてください。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング