旅行好きのおしりトラブル対策グッズ3選

ハロゲン化アルキルはなぜ水に溶けにくいのでしょうか。
ハロゲンは電子吸引だし、アルキルは電子供与ですよね・・・。

どなたかご教授お願いいたします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

溶解度の説明は単純なものではありません。


完全に説明できるものではなくある程度どまりです。

たとえば、-OH は、芳香族置換反応で、アルキルよりもはるかに強い
電子供与性です。エタノールやヒドロキノンのように、水に溶けやすく
なる性質があります。あなたの質問文とは、違いますね。
電子供与・吸引の極端な例のイオン性物質でも、すべて水に溶けるわけ
ではありません。塩化銀や硫酸バリウムなどほとんど溶けません。

ハロゲン化アルキルは、TLC などクロマトをやっているとわかりますが、
極性がかなり弱い部類です。一般的に有機物で
炭化水素<ハロゲン化物<エーテル<エステル<ケトン<アルコール
炭素数が同程度なら、右に行くほど極性が大きく、水溶性もほぼ同様。

なお、CH4, CH3Cl, CH2Cl2, CHCl3, CCl4 の比較では、真ん中が極性が
大きく、水への溶解度も大きいのは当たり前です。
CCl4 では C-Cl の極性ベクトルは、対称で打ち消されます。つまり、
C-Cl と残り3個の C-Cl のベクトルは逆向きにつりあうため同等です。
つまり、CH3Cl と CHCl3 は、分子レベルでほぼ同じ極性で、重さあたり
の溶解度は、変わらないレベルといっていいでしょう。
で、CH2Cl2 が極性の合成ベクトルは最も大きいのですが、もちろん倍に
ならず、計算では1個の C-Cl の 1.15 倍程度です。
ハロゲンの場合、たくさんついたからといって、まわりの他の分子から
見て、極性は大して大きくなるわけではないのです。

酢酸とトリフルオロ酢酸を比べた場合、酸としては後者が強くなりますが、
水への溶解度は、両方よく解けますが、後者は限界があります。

ジエチルエーテルとテトラヒドロフランを比べた場合、ほぼ同じ分子量の
エーテルでも、後者は、水と自由に混和します。
    • good
    • 0

>水に溶けにくい


ちっとも溶けにくい事はありませんよ。ただアルコール類のように水素結合を作るわけではないので、「完全な相溶」でないだけです。
クロロフォルムが0.8g/100mL(水)、
ジクロロメタン、1.3g/100mL(水)、
クロロメタン、0.5g/100mL(水)
話はそれますが、エーテル類ではジメチルエーテルが水と完全な相溶、メチルエチルエーテルはかなり溶け、ジエチルエーテルはあまり溶けないと言う事になっています。
しかし、使用直後のジエチルエーテルの空瓶に少量の水を入れ、掌で蓋をして両手で握って良く振ります。内部はかなりの減圧になります。ジエチルエーテルの蒸気が水に溶けたのです。溶解度は6.9g/100mL(水)です。
このように、水は非常に良い溶媒ですので、溶媒を乾燥するのには非常に高度なテクニックが必要です。

この回答への補足

ご回答ありがとうございます。
塩素の数は溶けにくさに関係しないのでしょうか?
クロロホルム(塩素3)→ジクロロ2→クロロ1にむかってどんどん溶けやすくなるというわけではないのですね。
アルキルに関しては、小さければ疎水の影響が少ないので「完全な相溶」ではないけれど、溶けるといった感じでしょうか?
エーテルに関連したお話まで、ご丁寧な回答をありがとうございます。

補足日時:2010/02/12 14:50
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qなぜハロゲンと付加するとより疎水性になるのですか?

一般にハロゲン(F Cl Br)を分子に付加するとより疎水性になると言われていますよね。なぜなのでしょうか?Cl やBrはわからないでもないですが(とても大きな分子かつ電気陰性度は炭素と変わらないので)、F の場合は電気陰性度が高くその分子をより極性にすると思うのですが。。。
なぜなのでしょうか?教えてください。

Aベストアンサー

1)荷電原子への溶媒和のしにくさ
 炭素に水酸基やアミノ基が結合した場合、炭素だけでなく、酸素や窒素に結合した
 水素も正電荷を帯びることができます。
 一方、ハロゲンは炭素と結合するだけなので、正電荷はまず炭素に乗ります。

 溶媒和を起こす場合、溶媒分子の正電荷部分が溶質の負電荷部分(窒素・酸素・
 ハロゲン)と結合すると同時に、溶媒分子の負電荷部分が溶質の正電荷部分と
 結合する必要があります。

 このとき、水酸基やアミノ基であれば、分子の外側に向けて伸びているので溶媒
 分子は容易に接近できますが、ハロゲンの場合は、ハロゲン自体は分子の外側に
 向いている一方、正電荷を帯びた炭素は水素やアルキル基などに囲まれているため、
 溶媒分子は接近しにくい状態です。
 静電引力は距離の二乗に反比例することから考えれば、この「(ハロゲンの対になる
 正電荷部分の)溶媒和のしにくさ」が、疎水性の一因と推測されます。


2)分子内での双極子の相殺
 ジクロロメタンなど、1つの炭素にハロゲンが結合した場合は、「炭素-ハロゲン」の
 位置関係は、その結合角で固定されて変化のしようがないので、双極子モーメントの
 合力は残ります。
 一方、1,2-ジフルオロエタンのように隣接炭素にハロゲンが結合した場合は、「炭素-
 炭素」の単結合が自由回転できます。
 電気陰性度の高い原子上には、その吸電子力によって負電荷が生じていますので、
 分子内では、互いが電気的反発によって最も離れた位置になろうとします。
 この結果、それぞれの「フッ素-炭素」の分極によって生じた双極子モーメントは
 相殺される形になると考えられます。
 これにより、ハロゲンの電気陰性度が高いにもかかわらず、一般的なハロゲン化
 炭化水素極性溶媒への溶解性は低いものと思います。


  比較的近いため、反発大
  ←――→
 F      F
  \    /
    C―C

  反発が少ない位置に配置=双極子モーメントが相殺される方向と重なる
 F
  \
    C―C
       \
        F
以下のサイトで「パーフルオロアルキル基の特長は、剛直で曲がりにくく」と
あるのも、炭素鎖が屈曲する際に、その内側でフッ素同士が反発するためと
考えられます:
http://www.seimichemical.co.jp/product/fluorine01.html



フッ素系化合物の親和性の低さについては、以前にも回答したことがありますので、
こちらも参考までに:
http://oshiete1.goo.ne.jp/qa1710656.html

1)荷電原子への溶媒和のしにくさ
 炭素に水酸基やアミノ基が結合した場合、炭素だけでなく、酸素や窒素に結合した
 水素も正電荷を帯びることができます。
 一方、ハロゲンは炭素と結合するだけなので、正電荷はまず炭素に乗ります。

 溶媒和を起こす場合、溶媒分子の正電荷部分が溶質の負電荷部分(窒素・酸素・
 ハロゲン)と結合すると同時に、溶媒分子の負電荷部分が溶質の正電荷部分と
 結合する必要があります。

 このとき、水酸基やアミノ基であれば、分子の外側に向けて伸びているので溶...続きを読む

Q直鎖状・環状エーテルと極性の関係

 ジエチルエーテルは、有機物を抽出するときなど、水と混ざらない有機溶媒の代表のように使われます。一方、同じエーテルでも、環状のテトラヒドロフラン(THF)やジオキサン(1,4-ジオキサン)は、任意の組成で水と混ざります。どちらも同じエーテルなので、直鎖状と環状の違いに起因するはずですが、一般的に、環状になると極性が高くなる、という経験則は成り立つのでしょうか? そうであるとすると、なぜそうなるのでしょうか? また、他にもこのような例があれば、教えてください。

Aベストアンサー

極性が曖昧であると言うのは、つまり、誘電率も極性の目安になりますし、分子における個々の結合の電荷の片寄りもまた極性の目安になります。
また、双極子モーメントもまた極性の定量的な目安の一つと言えると思います。しかし、個々の結合に電荷の片寄りがあっても、分子の対称性のために双極子モーメントが0になる場合もあるなど、分子の形状も問題になります。
そんなこんなで、厳密で定量的で、かつ汎用的な尺度となりうるような「極性」というものを議論するんは難しいと思います。

ヘキサンとシクロヘキサンでは、極性は同程度のはずです。どちらかと言えばシクロヘキサンの方が極性が小さかったように思いますが、これは確かではありません。
つまり、THFの場合には、電荷が大きく片寄っているC-O結合があるために、酸素原子上に負電荷が存在します。そのことが極性の原因になっています。それに対して、ヘキサンやシクロヘキサンには大きな極性を有する結合はありませんので、そもそも極性の原因になる部分が存在せず、環状になったからといって極性が大きくなることはないということです。
ヘキサンとトルエンの場合であれば、ベンゼン環の部分で、そのπ電子のために電子密度が高くなることが極性の原因になっていると考えられます。
DMSO、メタノールの場合には分子内の結合の電荷の片寄りが極性の原因になっています。一般に、結合の電荷の片寄りは、結合原子間の電気陰性度の差が目安になります。つまり、電気陰性度の差の大きい原子間の結合が多いほど分子の極性が大きくなるといえるでしょう。

極性が曖昧であると言うのは、つまり、誘電率も極性の目安になりますし、分子における個々の結合の電荷の片寄りもまた極性の目安になります。
また、双極子モーメントもまた極性の定量的な目安の一つと言えると思います。しかし、個々の結合に電荷の片寄りがあっても、分子の対称性のために双極子モーメントが0になる場合もあるなど、分子の形状も問題になります。
そんなこんなで、厳密で定量的で、かつ汎用的な尺度となりうるような「極性」というものを議論するんは難しいと思います。

ヘキサンとシクロ...続きを読む

Q塩酸-マグネシウム反応

フラボンやフラボノールが塩酸-マグネシウム反応で陽性(赤色)を呈する理由はわかるのですが、イソフラボンが陰性になる理由がわかりません。
二重結合が共役できないからでしょうか?アドバイスお願いします。

Aベストアンサー

No.1です。

すみません、ラジカルではなくピリリジン系の共鳴による発色だったんですね。
でしたら、kyu1さんが考えたとおり、共役鎖の延長の有無が、フラボンとイソフラボンでの呈色の有無を決めているということでよいと思います。
(なお、「酸素上の正電荷を、フェニル基上に移動させる共鳴式を描けない」というのはラジカルの場合と同じなので、図は省略します:「・」を「+」に変えてご覧下さい)

失礼致しました。

QMsClとTsClの使い分け

メシルクロライドとトシル酸クロライド。
どちらも同じような目的として利用する試薬だと思いますが、
この二つの違いとしてはどんなものがあるのでしょうか?

反応系の違いなどで使いわける?
溶媒の種類によって使いわける?
また、反応速度に違いなどあるのでしょうか?

御存知の方がいらっしゃいましたら、
また経験をお持ちの方、教えてもらえれば嬉しいです。

Aベストアンサー

メシルクロライドとトシルクロライドの違いは大まかに言うと
かかりやすさの違い、脱離能の違い、嵩高さの違いなどがあげられます。

使い分けする基準は、基質依存ですかね。
両方かけてみて収率のよい方を使うとか、その後の反応が上手くいく方を使うとか、嵩高さの問題でMsはかかるけどTsはかからない、逆にMsだと脱離し易すぎて副生成物が出来てしまう系など。

かける条件は今までにたくさん検討されてきた、標準的な条件にのっとることが多いです。
TsCl:Pyridine
MsCl:CH_2Cl_2、NEt_3

あとTsClの方が分子量がかなり大きいため、Ts化体は結晶化しやすいので保存には向いています。

Qアルコールとエーテルの水溶性の違い

エタノールは任煮の割合で水と混合するが、ジエチルエーテルは水に難溶性なのはなぜですか。

Aベストアンサー

アルコールが水素結合を作るのは当然として。

ジエチルエーテルは、分子モデルを考えてみると、酸素の両側にエチル基がついています。よって、極性が打ち消されて、ほぼ無極性になっているんですね。実際は、多少折れ曲がっていて、ちょっとだけ極性がありますが。

同じ炭素数4のエーテルでも、テトラヒドロフラン(シクロペンタンの炭素1個を酸素に置き換えたもの)は水と自由に混和します。分子モデルを考えてみて下さい。ジエチルエーテルよりも極性が大きいことが分かると思います。

Q溶解性

クロロホルム、メタノール、ジエチルエーテル、アセトン、酢酸エチルにそれぞれ水を加えてよく振り混ぜると、クロロホルム、ジエチルエーテル、酢酸エチルは水と混じり合わず、二層に分かれました。なぜクロロホルム、ジエチルエーテル、酢酸エチルは水と混じり合わないで、メタノール、アセトンは水と混じり合ったのですか?
教えて下さいm(_ _)m
また、クロロホルム、ジエチルエーテル、アセトン、酢酸エチルにメタノールを加えてよく振り混ぜると全て混じり合って二層に分かれませんでした。どうしてですか?酸素や炭素の数が関係するのですか?
教えて下さいm(_ _)m

よろしくお願いします★☆

Aベストアンサー

非常に大雑把な話として、有機化合物の場合、酸素の割合が多い分子ほど水によく溶けます。逆に炭素の割合が多ければ水に溶けにくくなります。

つまり、酸素は水の水素と水素結合を形成することができるために、水との親和性を増す作用があるからです。
逆に、炭化水素基は極性が小さく、疎水性の原子団です。そのため、大きなアルキル基があれば、水に対する溶解度が低下します。

ただし、酸素原子の位置関係(すなわち、関連する官能基)にもよりますので、おおよその目安にしかなりません。一般に炭素数が3以下の分子で、酸素原子を持つものは水と混ざりあいますが、炭素数が4になると完全には混ざらないものが多くなります。

有機化合物同士は混ざりあう組み合わせが多いですが、メタノールなど、極性の大きい分子は、単純な炭化水素とは混ざりあわない傾向があります。

Q比重の単位って?もうわけわからない・・・。

比重というのは、単位はなんなのでしょうか??
鉄の比重を7.85で計算すると考え、以下の疑問に答えてもらいたいのですが、
縦100mm・横100mm・厚さ6mmの鉄板の重さを計算したい場合、
100×100×6×7.85で計算すると、471000になります。
全部mに単位をそろえて計算すると、
0.1×0.1×0・006×7.85で、0.000471になります。

これで正確にkgの単位で答えを出したい場合、
0.1×0.1×6×7.85で、答えは0.471kgが正解ですよね?

・・・全く意味が解かりません。普通、単位は全部揃えて計算するものですよね??なぜ、この場合、厚さだけはmmの単位で、縦と横はmでの計算をするのでしょうか?

比重ってのは単位はどれに合わせてすればいいのでしょうか?

そして円筒の場合はどのように計算するのでしょうか?
まず、円の面積を求めて、それに長さを掛けるのですよね?
これは円の面積の単位はメートルにして、長さはミリで計算するのでしょうか??
わけわからない質問ですみません・・・。もうさっぱりわけがわからなくなってしまって・・。うんざりせずに、解かりやすく、教えてくださる方いましたらすみませんが教えて下さい・・。

比重というのは、単位はなんなのでしょうか??
鉄の比重を7.85で計算すると考え、以下の疑問に答えてもらいたいのですが、
縦100mm・横100mm・厚さ6mmの鉄板の重さを計算したい場合、
100×100×6×7.85で計算すると、471000になります。
全部mに単位をそろえて計算すると、
0.1×0.1×0・006×7.85で、0.000471になります。

これで正確にkgの単位で答えを出したい場合、
0.1×0.1×6×7.85で、答えは0.471kgが正解ですよね?

・・・全く意味が解かりません。普通、単位は全部揃えて計算するものですよね??...続きを読む

Aベストアンサー

#3番の方の説明が完璧なんですが、言葉の意味がわからないかもしれないので補足です

比重は「同じ体積の水と比べた場合の重量比」です
水の密度は1g/cm3なので、鉄の密度も7.85g/cm3になります
(密度=単位堆積あたりの重さ)
重さを求める時は「体積×密度(比重ではありません)」で求めます

おっしゃるとおり、計算をする時は単位をそろえる必要があります
100(mm)×100(mm)×6(mm)×7.85(g/cm3)ではmmとcmが混在しているので間違いです
長さの単位を全部cmに直して
10cm×10cm×0.6cm×7.85(g/cm3)=471g=0.471kg
と計算します(cmとgで計算しているのでCGS単位系と呼びます)

円筒の場合も同様に
体積×密度で求めます
円筒の体積=底面積(円の面積半径×半径×円周率)×高さ
です

比重=密度で計算するならば、水が1gになる体積1cm3を利用するために長さの単位をcmに直して計算してください
計算結果はgで出るのでこれをkgに直してください

最初からkgで出したい時は
水の密度=1000(kg/m3)
(水1m3の重さ=100cm×100cm×100cm×1g=1000000g=1000kg)
を利用して
目的の物質の密度=1000×比重(kg/m3)
でも計算できます
(このようにm kgを使って計算するのがSI単位系です)

0.1×0.1×6×7.85は#4の方がおっしゃるとおり
0.1×0.1×0.006×1000×7.85の0.006×1000だけ先に計算したのだと思います

#3番の方の説明が完璧なんですが、言葉の意味がわからないかもしれないので補足です

比重は「同じ体積の水と比べた場合の重量比」です
水の密度は1g/cm3なので、鉄の密度も7.85g/cm3になります
(密度=単位堆積あたりの重さ)
重さを求める時は「体積×密度(比重ではありません)」で求めます

おっしゃるとおり、計算をする時は単位をそろえる必要があります
100(mm)×100(mm)×6(mm)×7.85(g/cm3)ではmmとcmが混在しているので間違いです
長さの単位を全部cmに直して
10cm×10cm×0.6cm×7.85(g...続きを読む

QW/V%とは?

オキシドールの成分に 過酸化水素(H2O2)2.5~3.5W/V%含有と記載されています。W/V%の意味が分かりません。W%なら重量パーセント、V%なら体積パーセントだと思いますがW/V%はどのような割合を示すのでしょうか。どなたか教えていただけないでしょうか。よろしくお願いいたします。

Aベストアンサー

w/v%とは、weight/volume%のことで、2.5~3.5w/v%とは、100ml中に2.5~3.5gの過酸化水素が含有されているということです。
つまり、全溶液100ml中に何gの薬液が溶けているか?
ということです。
w/v%のwはg(グラム)でvは100mlです。

Q検量線

検量線とはどういったものなのか?
検量線を引くとはどういったことをすればいいのかおしえてください。

Aベストアンサー

masazo27さんの2番煎じとなりますが、改めて説明を試みたいと思います。
検量線を引くとは、測定器の固有差を見極め、その固有差を見極めた上で、未知試料について正確な測定を行うことを目的にしています。
例えば、ある水溶液中の砂糖の濃度を知ることが目的であるとします。砂糖の濃度を知ることが目的の検量線とは、砂糖0.1g、0.2g、0.3gをそれぞれ1Lの水に溶かし(あらかじめ濃度が既知の試料を作成し)、それを測定器にかけ、測定器の指示値を記録します。それを、横軸を濃度、縦軸を指示値にとったグラフ用紙に記入し、直線なり曲線で結びます(直線か、曲線かは理論的なものに依存します)。こうしてできたラインが検量線です。この検量線により、測定器の実際の指示値から濃度を推定できるようになります。ただし、検量線は濃度0.1~0.3g/Lの間で作成したので、その検量線の有効性もその間と言わざるを得ません。検量線から推定して1.5g/Lとでた場合には、その値の信憑性は低いと言わざるを得ないでしょう。その際は、O,1.0,2.0g/Lの既知試料等で検量線を引き直す必要があると思います。

masazo27さんの2番煎じとなりますが、改めて説明を試みたいと思います。
検量線を引くとは、測定器の固有差を見極め、その固有差を見極めた上で、未知試料について正確な測定を行うことを目的にしています。
例えば、ある水溶液中の砂糖の濃度を知ることが目的であるとします。砂糖の濃度を知ることが目的の検量線とは、砂糖0.1g、0.2g、0.3gをそれぞれ1Lの水に溶かし(あらかじめ濃度が既知の試料を作成し)、それを測定器にかけ、測定器の指示値を記録します。それを、横軸を濃度、縦軸を指示値にとったグラ...続きを読む

QSn1反応とSn2反応の違い

Sn1反応およびSn2反応になる条件について調べています。調べたところ両者には以下のような条件の違いがありました。

*Sn1反応*
[中間体]・・・・・3級>2級>1級>メチル
[反応条件]・・・・中性~酸性
[試薬の求核性]・・重要でない

*Sn2反応*
[中間体]・・・・・メチル>1級>2級>3級
[反応条件]・・・・中性~塩基性
[試薬の求核性]・・重要

中間体による違いは、カルボカチオンの超共役効果や立体障害に依存するのだと思います。しかし反応条件や試薬の求核性がどのようにSn1反応とSn2反応に関係するのかが分かりません。例えば、「なぜSn1反応は中性~酸性条件で進行するのか」といったようなことです。どなたか教えてください。

Aベストアンサー

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,どちらの反応の律速段階の反応速度が速いかで決ります。律速段階の反応速度が速い方の機構を通って反応が進行するわけです。

 さて,Sn1 反応の律速段階は御存知の様にカルボカチオンが生じる段階です。つまり,カルボカチオンができ易い程 Sn1 反応は速くなります。一方,Sn2 反応では反応中心の炭素が5つの結合を持った状態が遷移状態ですので,この状態ができ易いもの程反応が速くなります。

 まず,お書きの『中間体』についてです。カルボカチオンの安定性が「3級>2級>1級>メチル」の順であるのは御存知ですよね。これは付いているアルキル基の電子供与性効果と超共役による安定化がこの順で大きいからです。逆にこの順で立体障害が大きくなり,求核剤の接近は困難になります。つまり,「3級>2級>1級>メチル」の順で Sn1 反応の速度は速くなり,Sn2 反応の速度は遅くなります。結果,反応機構が Sn1 → Sn2 にシフトします。

 次に,『試薬の求核性』です。上記した様に Sn1 反応の律速段階はカルボカチオンができる段階であり,求核試薬はこの段階には関与しません。そのため,試薬の求核性は Sn1 反応にはあまり影響しません(重要でない)。一方,Sn2 反応では遷移状態の形成に求核試薬が関与しますので,遷移状態が出来やすい(試薬の求核性が高い)程反応は速くなります(試薬の求核性が重要)。結果,試薬の求核性が高い程 Sn2 反応で進行しやすくなります。

 最後に問題の『反応条件』です。何度も繰り返しになりますが,Sn1 反応の律速段階はカルボカチオンが出来る段階です。この過程では脱離基が抜けてカルボカチオンが生じると同時に,脱離基はアニオンになります。結果,このアニオンを安定化する条件(つまり,酸性もしくは中性)の方が Sn1 反応が進みやすくなります。逆に Sn2 反応は,求核試薬が剥出しの状態になる塩基性の方が攻撃性が高まり反応が速くなります(塩基でもある求核試薬を酸性条件下に置くと酸と反応してしまいます)。結果,塩基性から酸性になるに連れて,反応機構は Sn2 → Sn1 にシフトします。

 ざっとこんな感じですが,要点だけ纏めると,「カルボカチオンができ易い,脱離基が脱離し易い」条件は Sn1 に有利ですし,「アニオンができ易い,求核試薬が攻撃し易い」条件は Sn2 反応に有利です。そして,「求核置換反応の機構は Sn1 か Sn2 のどちらか」ですので,反応が起こらない場合は別にして,Sn1 反応が起こり難くなると Sn2 機構で,Sn2 反応が起こり難くなると Sn1 機構で反応が起こります。

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,...続きを読む


人気Q&Aランキング

おすすめ情報