忘れられない激○○料理

2重積分の変数変換の範囲についてです。

∬f(x,y)dxdy=∬f(φ(u,v),ψ(u,v))|J|dudv
の式を用いて解く問題で、この式の使い方はわかるのですが、u,vの範囲の決め方がよくわかりません。

たとえば、
x=u(1+v),y=v(1+u)
0≦x≦2,0≦y≦x
となっていたら、
0≦u(1+v)≦2,0≦v(1+u)≦u(1+v)
を解けばいいんですよね?

答えでは、v≦u≦2/(1+v),0≦v≦1となっていました。
uの範囲は理解できますが、vの範囲(v≦1の部分が)がどうしてこうなるのかがわかりません。

同様にx=u+v,y=u-v
0≦x≦2,0≦y≦2-x

0≦u≦1,-u≦v≦u
のvの範囲(v≦uの部分が)がどうしてこうなるのかわかりません。

教えてください。

A 回答 (1件)

>0≦u(1+v)≦2,0≦v(1+u)≦u(1+v)


>を解けばいいんですよね?
その通り。でも

>答えでは、v≦u≦2/(1+v),0≦v≦1となっていました。
は間違い。

uをx軸(横軸)、vをy軸(縦軸)にとって(u,v)の存在領域を図示すれば
積分領域が明確に分かるかと思います。
正解:「v≦u≦2/(1+v),0≦v≦1」及び「(2/u)-1≦v≦u,-2≦u≦-1」

>同様にx=u+v,y=u-v
>0≦x≦2,0≦y≦2-x
>で
>0≦u≦1,-u≦v≦u
>のvの範囲(v≦uの部分が)がどうしてこうなるのかわかりません。
0≦u+v≦2,0≦u-v≦2-u-v
をuv平面に描くと領域が図の斜線の領域になります。式で書けば
0≦u≦1,-u≦v≦u
「2重積分の変数変換の範囲についてです。」の回答画像1
    • good
    • 3
この回答へのお礼

図付きですごくよくわかりました!ありがとうございました。

お礼日時:2010/07/05 19:56

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


おすすめ情報