
No.3ベストアンサー
- 回答日時:
よく知っている公式sin二乗Θ+cos二乗Θ=1も使いましょう。
簡単にするために、sinΘ=x cosΘ=y とします。
問題はx+y=1/3の時にx^3+y^3を求めることになります。
使う公式はx^2+y^2=1です。
三乗が欲しいのでまずx+yを三乗します。
(x+y)^3=(x^2+y^2+2xy)(x+y)=x^3+y^3+3xy^2+3yx^2ですから、移項して
x^3+y^3=(x+y)^3-3xy(x+y)・・・・・(ア)になります。
ここでxyを求めるために公式x^2+y^2=1を使います。
(x+y)^2=x^2+y^2+2xy=1+2xyですから、xy={(x+y)^2-1}/2になり、
x+y=1/3を代入してxy={(1/3)^2-1}/2=(1/9-1)/2=(-8/9)/2=-4/9に
なります。この値とx+y=1/3を(ア)式に代入して
x^3+y^3=(1/3)^3-3*(-4/9)*(1/3)=1/27+4/9=13/27
よってsin三乗Θ+cos三乗Θ=13/27となります。
No.2
- 回答日時:
答え:13/27だと思います。
解き方:x^3+y^3=(x+y)(x^2-xy+y^2)という因数分解の公式を利用します。この問題の場合はx+yの値が分かっているし、三角関数だからx^2+y^2=1ということも分かっています。なのでxyの値さえ分かればおしまいです。
まずsinΘ+cosΘ=1/3の両辺を二乗する。すなわち
(sinΘ+cosΘ)^2=sin二乗Θ+cos二乗Θ+2sinΘcosΘ=1+2sinΘcosΘ=1/9
となるので、sinΘcosΘ=-4/9…(1)である。
次にx^3+y^3=(x+y)(x^2-xy+y^2)だから
sin三乗Θ+cos三乗Θ=(sinΘ+cosΘ)(sin二乗Θ+cos二乗Θ-sinΘcosΘ)=(sinΘ+cosΘ)(1-sinΘcosΘ)…(2)
(2)式の右辺にsinΘ+cosΘ=1/3とsinΘcosΘ=-4/9を代入する。つまり
(sinΘ+cosΘ)(1-sinΘcosΘ)=1/3×(1+4/9)=13/27
No.1
- 回答日時:
>sinΘ+cosΘ=1/3のときの sin三乗Θ+cos三乗Θの値の解き方と答えが分かりません。
まず、(sinΘ+cosΘ)^2=(1/3)^2 を計算して、sinΘcosΘ の値を求めて下さい。
次に、公式a^3+b^3=(a+b)(a^2-ab+b^2)を使って
sin三乗Θ+cos三乗Θの値を求めて下さい。
まだ計算していませんが、これで求められると思います。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
画像のように、マイナスをsinの...
-
フーリエ級数展開
-
∫x^2√(1-x^2)の不定積分
-
tanθ=2分の1のときの sinθとcos...
-
sin2xの微分について
-
3辺の比率が3:4:5である直...
-
数学の微分です
-
数cです 途中式もお願いします
-
291の(2)の第2次導関数を求めな...
-
高1 数学 sin cos tan の場所っ...
-
答えがマイナスになる理由が分...
-
楕円の二重積分について
-
数学Iの三角比
-
θが鈍角のとき、sinθ=4分の3の...
-
sinθ+cosθ=1/5のときのcosθの値...
-
三角関数について
-
加法定理の応用問題でcosα=√1-s...
-
次の関数を微分せよ y=sin^4 x ...
-
三角関数 sin cos tanの表につ...
-
合成関数
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
sin2xの微分について
-
教えてください!!
-
e^iθの大きさ
-
画像のように、マイナスをsinの...
-
tanθ=2分の1のときの sinθとcos...
-
アークサインの微分
-
θが鈍角のとき、sinθ=4分の3の...
-
数学の問題で。。。0<θ<90 Sin...
-
急いでます! θが鈍角で、sinθ...
-
3辺の比率が3:4:5である直...
-
高1 数学 sin cos tan の場所っ...
-
∫sin^2x/cos^3xdxの解き方が...
-
数学 2次曲線(楕円)の傾きの計...
-
式の導出過程を
-
sinθ+cosθ=1/3のとき、次の式の...
-
楕円の単位法線ベクトルがわか...
-
sin(ωt+θ) のラプラス変換
-
数学の微分です
-
次の関数を微分せよ y=sin^4 x ...
-
三角関数の合成
おすすめ情報