
No.7
- 回答日時:
lim[x→0]sin(1/x)が存在すると仮定します。
すると、
これはxのゼロの近づき方にかかわらず、この極限値は同じにならないといけない。
ということで、
x_n = 1/(π/2+2nπ)
ここで、n=1,2,3・・・
という点をとりながら、
xがゼロに近づいてゆくと、
sin(1/x_n) = sin(π/2+2nπ) = 1
なので、
lim[x→0]sin(1/x)=0
にならないでしょう。
この近づき方だと、
lim[x→0]sin(1/x)=1
になってしまいます。
さらに、x_n = 1/(-π/2+2nπ)という点をとりながら、xがゼロに近づくと、
sin(x_n) = sin(-π/2+2nπ) = -1
だから、
lim[x→0]sin(1/x) = -1
となってしまいます。
xのゼロに近づき方によって、lim[x→0]sin(1/x)(?)の値が変わってしまいます。
つまり、
lim[x→0]sin(1/x)
は存在しない!!
ということです。
No.5
- 回答日時:
Yahoo! 知恵袋に似た質問がありました
極限値を求める問題ですが、
lim[x→0] sin(1/x) の極限値はどのように式で表して解答すればよいのでしょうか。
http://detail.chiebukuro.yahoo.co.jp/qa/question …
ベストアンサー:
ε-δ論法&背理法にしてみます。
x→0でsin(1/x)→aと収束すると仮定する。あるδ>0に対して、閉区間D=[{(2/δ)+2π}^(-1), δ/2]を考えると、
f(x)=sin(1/x)と書くとf(D)=[-1,+1]⊂Rとなる。よって例えばε=1/2とすると、これはε-δ論法による極限の定義、
任意のε>0に対して「|x|<δ⇒|sin(1/x)-a|<ε」となるδ>0が存在する
の反例となっており、収束するとの仮定が誤りと分かる。
「反例となっている」を補足説明します。
(1) 閉区間Dは{x∈R:|x|<δ}に含まれます。
(2) しかし、f(D)は長さ2の区間であるのに対し、{x∈R:sin(1/x)-a|<ε}(ε=1/2)はaによらず長さ1の区間なので、
決してf(D)⊂{x∈R:sin(1/x)-a|<ε}とはなりません。
以上(1)(2)から、|x|<δ⇒|sin(1/x)-a|<εが成立しないことが分かります。
~~~~~~~~~~~~~~~~~~~~~~
【答え】 |x|<δ⇒|sin(1/x)-a|<ε は成立しません
No.4
- 回答日時:
No.3 さん、訂正どうもありがとう
sin(1/x) って、x が 0 に近づくと、1/x は無限に大きくなって、
sin(1/x) は -1 と 1 の間を限りなく振幅しますよね
x → ∞ だと、lim[x→∞]sin(1/x)=0 になりますけど
それとも、lim[x→0]sin x =0 かなぁ?

No.3
- 回答日時:
命題の式
lim[x→0]sin(1/x)
において,xが限りなく 0 に近づくとき,1/x は限りなく無限大に近づく事になります。
NO.1 さんのご回答の内,『sin (1/2) 』は『sin (1/x→0) 』の書き誤りかと思いますが,『-1 と 1 の間を限りなく振幅し、0 にはなりません』が正解かと思います。
No.2
- 回答日時:
with_nature って自然、天然って意味ですか?
僕も卓球のコーチから天然って言われます
普通にドライブしてても、真ん中に当たらないので
ナックルになったり、エッジに当たって回転
かからなかったり、指に当たって指ナックルになったり
横回転サーブのつもりなのに、何故か上、下回転が
かかります
僕より上手な中学生はいつも同じボールを返してて
コーチに「素直すぎる。クセ球がない。簡単に返せる」
と文句 言われてます
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数2の問題です θ=7/6π のsinθ...
-
大学受験時のsin,log,lim,xの表記
-
θが次の角のとき、sinθ、cosθ、...
-
sin²θとsinθ²と(sinθ)²って全部...
-
2つの円の一部が重なった図
-
極限の問題
-
三角関数の複素フーリエ級数展開
-
複雑な三角関数の周期の求め方
-
三角関数の定積分の定義域
-
全空間で積分の意味
-
eの積分について
-
【高校物理】 Q.とある波動の...
-
sinωTをTで積分。
-
2変数関数の連続性について
-
sin(x + y) = sin x + sin y の...
-
フーリエ変換の相似性(時間軸...
-
0≦x≦πにおける Y=2sinX + 3co...
-
数学 三角関数
-
1/sin^2xと1/tan^2xの微分の答...
-
三角関数の導関数
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
大学受験時のsin,log,lim,xの表記
-
eの積分について
-
sin²θとsinθ²と(sinθ)²って全部...
-
sinのマイナス1乗の計算方法を...
-
sinωTをTで積分。
-
極限の問題
-
e^(-x)*|sinx| これを積分する...
-
底辺と角度から、高さを求める。
-
2つの円の一部が重なった図
-
数2の問題です θ=7/6π のsinθ...
-
(sinx)^2 のn次導関数
-
どんな整数であってもsin(nπ)=0...
-
1/sin^2xと1/tan^2xの微分の答...
-
n次導関数
-
θが次の角のとき、sinθ、cosθ、...
-
数IIIの極限
-
周期の最小値?
-
sinx=cosxの解き方。
-
数学 sin1/2は何を表しているの...
-
(arcsinx)^2 この積分の途中式...
おすすめ情報