No.7
- 回答日時:
lim[x→0]sin(1/x)が存在すると仮定します。
すると、
これはxのゼロの近づき方にかかわらず、この極限値は同じにならないといけない。
ということで、
x_n = 1/(π/2+2nπ)
ここで、n=1,2,3・・・
という点をとりながら、
xがゼロに近づいてゆくと、
sin(1/x_n) = sin(π/2+2nπ) = 1
なので、
lim[x→0]sin(1/x)=0
にならないでしょう。
この近づき方だと、
lim[x→0]sin(1/x)=1
になってしまいます。
さらに、x_n = 1/(-π/2+2nπ)という点をとりながら、xがゼロに近づくと、
sin(x_n) = sin(-π/2+2nπ) = -1
だから、
lim[x→0]sin(1/x) = -1
となってしまいます。
xのゼロに近づき方によって、lim[x→0]sin(1/x)(?)の値が変わってしまいます。
つまり、
lim[x→0]sin(1/x)
は存在しない!!
ということです。
No.6
- 回答日時:
No.5
- 回答日時:
Yahoo! 知恵袋に似た質問がありました
極限値を求める問題ですが、
lim[x→0] sin(1/x) の極限値はどのように式で表して解答すればよいのでしょうか。
http://detail.chiebukuro.yahoo.co.jp/qa/question …
ベストアンサー:
ε-δ論法&背理法にしてみます。
x→0でsin(1/x)→aと収束すると仮定する。あるδ>0に対して、閉区間D=[{(2/δ)+2π}^(-1), δ/2]を考えると、
f(x)=sin(1/x)と書くとf(D)=[-1,+1]⊂Rとなる。よって例えばε=1/2とすると、これはε-δ論法による極限の定義、
任意のε>0に対して「|x|<δ⇒|sin(1/x)-a|<ε」となるδ>0が存在する
の反例となっており、収束するとの仮定が誤りと分かる。
「反例となっている」を補足説明します。
(1) 閉区間Dは{x∈R:|x|<δ}に含まれます。
(2) しかし、f(D)は長さ2の区間であるのに対し、{x∈R:sin(1/x)-a|<ε}(ε=1/2)はaによらず長さ1の区間なので、
決してf(D)⊂{x∈R:sin(1/x)-a|<ε}とはなりません。
以上(1)(2)から、|x|<δ⇒|sin(1/x)-a|<εが成立しないことが分かります。
~~~~~~~~~~~~~~~~~~~~~~
【答え】 |x|<δ⇒|sin(1/x)-a|<ε は成立しません
No.4
- 回答日時:
No.3 さん、訂正どうもありがとう
sin(1/x) って、x が 0 に近づくと、1/x は無限に大きくなって、
sin(1/x) は -1 と 1 の間を限りなく振幅しますよね
x → ∞ だと、lim[x→∞]sin(1/x)=0 になりますけど
それとも、lim[x→0]sin x =0 かなぁ?
No.3
- 回答日時:
命題の式
lim[x→0]sin(1/x)
において,xが限りなく 0 に近づくとき,1/x は限りなく無限大に近づく事になります。
NO.1 さんのご回答の内,『sin (1/2) 』は『sin (1/x→0) 』の書き誤りかと思いますが,『-1 と 1 の間を限りなく振幅し、0 にはなりません』が正解かと思います。
No.2
- 回答日時:
with_nature って自然、天然って意味ですか?
僕も卓球のコーチから天然って言われます
普通にドライブしてても、真ん中に当たらないので
ナックルになったり、エッジに当たって回転
かからなかったり、指に当たって指ナックルになったり
横回転サーブのつもりなのに、何故か上、下回転が
かかります
僕より上手な中学生はいつも同じボールを返してて
コーチに「素直すぎる。クセ球がない。簡単に返せる」
と文句 言われてます
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 微分積分のlimについての問題がわからないです。 6 2022/07/14 14:04
- 数学 数学の極限問題 4 2023/05/18 15:50
- 数学 数3の極限の問題です。 ①lim(x→1) 2/(x-1)^2 ②lim(x→2) 3/x^2-3x 2 2022/11/30 10:26
- 数学 線形代数の行列についての問題がわからないです。 1 2022/07/18 17:46
- 数学 数学Ⅲの関数の極限、関数の連続・不連続に関しての質問でございます。 問題集には、次の関数の〔 〕内の 5 2022/05/19 10:43
- 数学 極限の問題で質問です。 lim[x->+0] x*(e^(1/x)-1)/(e^(1/x)+1) こ 3 2023/07/07 09:18
- 数学 高校数学 極限 lim[n→∞]|1+i/n|^n を求める問題(iは虚数単位、nは自然数)で、 i 2 2023/02/13 12:22
- 数学 微分積分の極限についての問題がわからないです。 1 2023/01/08 13:34
- 数学 有限な値を取るための条件って一般化できるのでしょうか 6 2022/08/25 15:45
- 数学 極限値とロピタルの定理 3 2023/07/26 12:18
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
【大喜利】看板の文字を埋めてください
旅行先でほぼ消えかけている看板に出会いました。 何を気を付ければいいのか穴埋めをして教えてください。
-
何歳が一番楽しかった?
自分の人生を振り返ったとき、何歳のころが一番楽しかったですか? 子供の頃でしょうか、それとも大人になってからでしょうか。
-
冬の健康法を教えて!
温度変化が大きくなり、風邪をひきやすいこれからの季節。 どんなことに気をつけていますか?
-
大学の問題です。
数学
-
f(x)=sin(1/x)(xは0以外)を0に限りなく近づけた極限を求めたいのですが、私は∞という答
数学
-
数IIIの極限
数学
-
-
4
∫1/(x^2+1)^2 の不定積分がわかりません
数学
-
5
大学数学の極限の問題について lim【x→+0】(1/x -1/sinx )の極限はどのように求める
数学
-
6
関数の連続性ε-δ論法
数学
-
7
lim(X→0)sin(1/X)とlim(x→0)cos(1/X)って何ですか?
数学
-
8
sin(1/n)
数学
-
9
関数の極限について
数学
-
10
e^(x^2)の積分に関して
数学
-
11
シグマなど文字を含んだままでの微分の仕方
経済学
-
12
積分で1/x^2 はどうなるのでしょうか?
数学
-
13
y=e^x^x 微分 問題
数学
-
14
∞/0って不定形ですか?∞ですか? そもそも不定形の定義ってなんでしたっけ
数学
-
15
sinなどの有効数字
物理学
-
16
最大元と極大元の定義の違いが分かりません
数学
-
17
エッチバー
その他(Microsoft Office)
-
18
ヘシアンが0の場合どうやって極値が存在することを調べればよいのでしょう
数学
-
19
極限 証明
数学
-
20
大学の数学の問題です。
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】看板の文字を埋めてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
周期の最小値?
-
底辺と角度から、高さを求める。
-
sin²θとsinθ²と(sinθ)²って全部...
-
e^(-x)*|sinx| これを積分する...
-
0°≦θ≦180° sinθ=0° のとき、 θ=...
-
大学受験時のsin,log,lim,xの表記
-
sinのマイナス1乗の計算方法を...
-
2つの円の一部が重なった図
-
立体角の公式の導出がわかりま...
-
これsin75°を求めよで答え √6+...
-
eの積分について
-
(sinθ)^2とsin^2θの違い
-
ラングレー問題(角度の問題の...
-
簡単な偏微分についての質問です。
-
数IIIの極限
-
積分 ∫√(4-x^2)dxについて
-
積分の問題です sin^4θ•cosθの...
-
sin2θからsinθを求めるには?
-
微分の問題
-
数2の問題です θ=7/6π のsinθ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
周期の最小値?
-
sin²θとsinθ²と(sinθ)²って全部...
-
底辺と角度から、高さを求める。
-
大学受験時のsin,log,lim,xの表記
-
sinのマイナス1乗の計算方法を...
-
sinωTをTで積分。
-
数2の問題です θ=7/6π のsinθ...
-
積分 ∫√(4-x^2)dxについて
-
2つの円の一部が重なった図
-
eの積分について
-
e^(-x)*|sinx| これを積分する...
-
簡単な偏微分についての質問です。
-
0°≦θ≦180° sinθ=0° のとき、 θ=...
-
数学 sin1/2は何を表しているの...
-
なぜ2sinθ=1になるんですか?
-
どんな整数であってもsin(nπ)=0...
-
これsin75°を求めよで答え √6+...
-
sinx=cosxの解き方。
-
(arcsinx)^2 この積分の途中式...
-
円柱と平面方程式の交線につい...
おすすめ情報