マンガでよめる痔のこと・薬のこと

データ数(N数)が少ない場合の工程能力を求める際、標準偏差を補正したいです。調べたところ下記2つの方法があるようなのですが、どちらが正しい考え方なのでしょうか。使い分け等あれば教えていただきたいです。補正方法(1)のほうが(2)に比べて補正係数が大きく(信頼区間にもよりますが)、その意味するところの違いも教えていただきたいです。

できれば、実用面からエクセルでの計算例もあるとありがたいです。

※下名の知識レベルとしては、学生時代に一度統計学の講義を受けた程度でほとんど忘れています。


補正方法(1)(・・・計算方法はわかりました)
 標本から求めた標準偏差をχ二乗分布で区間推定し、
 母集団の標準偏差とのずれを補正する
  ※参考URL:http://ouenblog.divaandco.com/?eid=940571

補正方法(2)(・・・合っているかだけでなく、計算方法も不明)
 標準偏差の不偏推定量D(Wikipediaより)を直接使い、標本の標準偏差との差を補正する。
 具体的には、不偏分散u^2にはエクセルにおけるSTDEV関数で求めた標準偏差を代入し、
 ガンマ関数の部分はGAMMALN関数内に自由度÷2、データ数÷2を入れて計算する?
  ※参考URL:http://ja.wikipedia.org/wiki/%E6%A8%99%E6%BA%96% …
  →"統計値の標準偏差"の上から5番目の式

統計学は難しいですね・・・
ご回答よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

 「標準偏差の補正」と仰るのは、(a)単に母集団の標準偏差を推定したいのか、(b) 標準偏差の信頼区間の上限・下限(つまり「最悪」どこまで大きい可能性があるか・「最良」どこまで小さい可能性があるか)を計算したいのか。

どっちなのかをまずはっきりしてもらわんと。

 (a) 「最もありそうな結果」を推定したいという話。
 母集団の標準偏差を使ってCpkを計算すれば良い訳ですが、その母集団の標準偏差の推定には、「普通」は母集団の分散の不偏推定を行って、その平方根を使う。しかしうるさい事を言えば、平方根y=√xが非線形変換であるために、微妙な補正が必要になる(「補正方法(2)」に該当)。ただし、分散の不偏推定値が持つ相対誤差が小さい時には、y=√xをその接線で近似しても誤差が少ないので、補正はほとんど効かない。だから、そんな手間は掛けないのが「普通」。

 (b) 「最悪(最良)どうなるか」を推定したいという話。(「補正方法(1)」に該当。)
 たまたまサンプルのばらつきが実力以上に小さかった場合(実力よりばらついていた場合)に、(a)の方法で推定した母集団の標準偏差は真値より小さい(大きい)ことになるんで、それを使って計算したCpkは実力以上に良い(悪い)ことになる。なので、得られたサンプルから予測される最も悲観的(楽観的)な母集団の標準偏差は(そしてCpkは)幾らか、ということを推定しようということ。ただし、最悪(最良)とは言いながら、実際には信頼区間を勝手に設定した上での上限・下限を使うしかない。

> 補正方法(1)のほうが(2)に比べて補正係数が大きく

 両者は全然別の目的で別のことをやっているのであり、比べるのは無意味。これは統計学が難しいという話じゃなくて、「一体何のために計算をやってるのか」を忘れちゃいけない、というだけのアッタリマエのことです。
    • good
    • 5

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q標準偏差を求める際のデータ数について

統計初心者ですが、この度アンケート調査を行い、その結果報告書を作成しなければならないのですが、データ数9の場合、平均、最小、最大に加え、標準偏差も記載しようと思っていますが問題はないでしょうか?

標準偏差は、データが30、50以上ないと意味がないということを聞いたことがあるので戸惑っています。

また問題ない場合、「データ数が少ない場合は補正係数を掛ける」という説明を見かけたのですが、これは単に算出した標準偏差に補正係数を掛けて、記載すればいいのでしょうか? この場合の記載の仕方などについても教えていただけないでしょうか。

Aベストアンサー

標準偏差を求めることは,特に問題はありません。
ただ,データ数が少ないとばらつき具合が正しいかどうかの判断に困るというだけです。

補正係数については,条件によって変化する場合,例えばアンケートだと男女差や年代等による差異を軽減するためには使えますが,質問を見る限りは補正をする必要はないと思います。

標準偏差の意味を知る意味でも,正規分布について調べてみることをおすすめします。

Q工業製品の抜き取り検査のN数の決め方

実際に今起きている話ですが、例えばあるロットの一部を1箇所切り出して測定し、規格10以下に対して9であったため合格として納入したところ、客先で同じロットの別の場所からサンプリングし、検査した所、11であったらしく、このロットはNG扱いとなってしまいました。流出防止策として、安易な考えで”ロットの一部を1箇所切り出して測定し、8以上の場合は再サンプリングして判定する”としましたが、統計的に、再度サンプリングするための閾値の決め方やN数の決め方はどのようにすべきでしょうか?検査の工数増をできるだけ避けたいので、むやみやたらとN増しは行いたくなく、かといって仮に数十箇所測定して1箇所だけ規格外があっても、工場としては納品したいのが本音です。工場、客先双方が納得できる落としどころがあればよいのですが。

Aベストアンサー

今回の質問の前提条件を確認したいです.

抜き取り検査が許されているということは,普通は工程能力が十分あることが
確認されていると思います.そうでなければ抜き取り検査ではなく,全数検査する必要が
あるはずです.

今回の結果は「11」とは,規格上限に対して外れていたということでしょうか.
それとも規格上限には余裕があった上で,取り決めた数値に対して外れていたということ
でしょうか.(そうでなければ品質管理としては理屈がなっていないですが)

先ずはこの製品の工程能力がどんなものかそれがスタートです.



>仮に数十箇所測定して1箇所だけ規格外があっても、工場としては納品したいのが本音です

気持ち的には分かるところもありますが,こんなことを了解していては品質管理が分かっていない,
もしくは無視していることにしかならないと思いますが.

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

QJIS/ISO規格に基づくサンプル数の考え方・決め方

部品の温度上昇に関する試験依頼がありました。
サンプル数については依頼がありませんでしたが、
ISO規格、JIS規格等に基づく根拠を明確にして
説明することが求められています。

ISO規格、JIS規格に基づくサンプル数の決め方、計算方法、
根拠等についてアドバイスいただきますようお願い申しあげます。

Aベストアンサー

以下に詳細がありますのでご覧下さい。
http://homepage1.nifty.com/QCC/2003-3.html
http://aql.blog19.fc2.com/blog-entry-15.html

業務なら
「JIS Z 9015」そのものをご覧になられては
いかがでしょうか?

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q±4σに入る確率について教えてください

ウィキペディアの検索より、
確率変数XがN( μ, σ2)に従う時、平均 μ からのずれがσ以下の範囲にXが含まれる確率は68.26%、2σ以下だと95.44%、さらに3σだと99.74%となる。
と分かりました。

そこで
4σ、


の場合確率はどうなるか教えてください。
よろしくお願い致します。

Aベストアンサー

Excel で NORMDIST を使い、平均 50、標準偏差 10 (いわゆる偏差値)で計算してみましたら、次のようになりました。

 σ 0.682689492137086
2σ 0.954499736103641
3σ 0.997300203936740
4σ 0.999936657516326
5σ 0.999999426696856
6σ 0.999999998026825
7σ 0.999999999997440
8σ 0.999999999999999
9σ 1.000000000000000

Excelの関数の精度がどの程度のものか分かりませんが、9σで100%になりました。

Q統計的工程管理

仕事で工程管理の勉強を始めました。
基礎的な用語なんですけど分かりません、教えてください。
(1)工程能力指数のCpとCpkとの違いが分かりません。どちらも同じ意味なのでしょうか?
(2)PpとPpkは何を意味するのでしょうか?

教えて下さい、宜しくお願します。

Aベストアンサー

(1) Cpは工程能力指数(Process Capability Index)のことで、工程でのデータ分布と規格との数的関係を表したものです。通常、
Cp=(上限規格値-下限規格値)/6s
    s=工程データの標準偏差
で計算されます。
ただし、このCpはデータの分布の中心(=平均値)が上限規格値と下限規格値の中央にあることが前提となっていて、ズレは考慮されていません。
そこで、平均値が上下規格の中心からずれている(=かたより)場合に用いる指標として、Cpkが作られました。

Cpk=(1-K)Cp

  |平均値-(規格上限値+規格下限値)/2|
K=--------------------------------------
   (規格上限値+規格下限値)/2

  |・・|は絶対値

です。したがって、偏りがない場合(平均値が上下規格値の中央と一致)はK=0で、Cp=Cpkですが、ズレが大きいほど、工程能力指数は下がります。

(2) Ppは工程性能指数(Process Performance Index)といわれ、アメリカのGMなどが提唱するQS9000という規格で使われているものです。
QS9000では、上記のCpの式で計算したものをPpと呼びます。ではCpはどうなるのかというと、上記式のsの部分が Rbar/d2 となります。これはX-R管理図から求めるもので、統計上、郡内変動を表します。これに対して、Ppはデータの標準偏差を使うところに違いがあります。
PpkはCpkと同様で、
Ppk=(1-K)Pp
Kの計算は上記と同じです。

QS9000では工程管理の一貫として管理図を使うことが書かれているため、管理図から工程能力指数を出そうとしたようです。そのため、工程管理でわかる工程能力とサンプリングデータによる工程能力を分ける意味で、PpとCpを作ったようです。

ちなみに、どの指数も、1以下では工程能力がないと判断され、QS9000では2以上が目標とされます。

(1) Cpは工程能力指数(Process Capability Index)のことで、工程でのデータ分布と規格との数的関係を表したものです。通常、
Cp=(上限規格値-下限規格値)/6s
    s=工程データの標準偏差
で計算されます。
ただし、このCpはデータの分布の中心(=平均値)が上限規格値と下限規格値の中央にあることが前提となっていて、ズレは考慮されていません。
そこで、平均値が上下規格の中心からずれている(=かたより)場合に用いる指標として、Cpkが作られました。

Cpk=(1-K)Cp

  |平...続きを読む

Qバラツキを考慮して平均を補正したい

会社でちょっとした統計処理をしていて、
バラツキを考慮して平均を補正するという作業をしたいのでが、、、
なかなかうまくいきませなん。

例1) a1=2, a2=2, a3=2
例2) b1=-1, b2=0, b3=7

例1)a1~a3の平均と、例2)b1~b3の平均はどちらも"2"です。
しかし、例2)はb3だけが突出していて印象的には"2"よりも若干低めの、0~1ぐらいに補正したいのです。
しかし、補正をするための数学的根拠が見つけられないのです(そもそも無いのか?)。

私のつたない知識ですと、バラツキを現す手法としては標準偏差が思い当たりますが、
例1)の標準偏差=0
例2)の標準偏差=3.56
なので、これを利用して何とかならないか、、、などなど考えています。
平均値をバラツキを考慮して補正する、数学的根拠のある方法は存在するのでしょうか。

Aベストアンサー

#3です.

まず.「補正」という考え方は捨てた方がいいと思います.
この種のデータの扱いにはいろいろあります.

1.例2の「7」を捨てる
 質問にも書かれているように,データの出所から考えて「7」はおかしいのだというのであれば,これを捨てます.残ったデータは,「-1と0」ですから,平均をとれば「-0.5」になりますね.
この場合は,「7」を捨てる理由が必要です.
1)異常値として扱う
測定ミス,記入ミスなどは,「異常値」と呼びます.
本来は,原因を追究して値を書き直さなければなりません.例えば,7ではなく,0.7だったとかいうことです.
異常値の場合には,3個のデータのうちの最大値だけを捨ててしまうのは,誤ったやり方です.
2)外れ値として扱う
これは,異なる母集団が混ざってしまった場合です.
例えば,「1と0は20代の人の答え」「7は50代の人の答え」であって,明らかに集団が違う場合には,2個のデータと1個のデータに分けてしまって構いません.
ですから,-1と0の平均をとって,答え「-0.5」として構いません.

2.本当に補正(というかどうか?)できないのか?
実はできないことはありません.
ただし,事前に分布が分かっていることが必要です.
世の中には「二段階推定法」などというのもありますが,「確率紙」を使ってみるのも手でしょう(どちらも分布の仮定が必要です).
いま,データが3個ありますから,それぞれのデータが全体の何パーセントの位置なのかを計算します.
-1は3個の中の1番目ですから,1/(3+1)=0.25,
0は3個の中の2番目ですから,2/(3+1)=0.5
7は使いません.
この2点を確率紙に打点し,確率紙に書いてある通りに線を引くと平均などが求まります.

3.その他の注意
3個のデータで平均をとってもあまり意味ありませんね.
10個あるのなら,最小値,最大値を捨てて,8個で計算してもいいのではないかと思います.

#3です.

まず.「補正」という考え方は捨てた方がいいと思います.
この種のデータの扱いにはいろいろあります.

1.例2の「7」を捨てる
 質問にも書かれているように,データの出所から考えて「7」はおかしいのだというのであれば,これを捨てます.残ったデータは,「-1と0」ですから,平均をとれば「-0.5」になりますね.
この場合は,「7」を捨てる理由が必要です.
1)異常値として扱う
測定ミス,記入ミスなどは,「異常値」と呼びます.
本来は,原因を追究して値を書き直さなけ...続きを読む

QCpとCpkの差について

私の理解が間違えていたら正してください。
とある工程で、Cp=5、Cpk=4という結果が出ました。
数字だけ見るとかなり良いですし、実際に規格外の製品が出来上がる可能性は限りなくゼロに近いと思います。しかしながら、確率分布曲線を描いてみると、狙い値通りの製品が出来上がる確率も1%に満たない、となりました。
さらに、この工程がCp=6、Cpk=4と移行した場合、バラツキは狭まった代わりに平均値が狙い値から離れ、狙い値通りの製品が出来上がる確率はほぼゼロとなりました。
規格外の製品を作らないという点では問題ないと思いますが、狙い値どおりの製品を作るという視線から考えると、こういうトレンド(Cpkが変わらずCpの値が上昇する)はあまり好ましくないと思うのですが、考え方は合っているでしょうか。
そもそも、確率分布曲線のXY軸の意味を良く理解していないかも知れません。
『X軸は狙い値をセンターとして、実際の値、Y軸はX軸のそれぞれの出来上がり寸法での発生率』と理解しています。
例えば上限値=3σであれば、上限ギリギリの製品が出来上がる確率は0.13%。

私の理解が間違えていたら正してください。
とある工程で、Cp=5、Cpk=4という結果が出ました。
数字だけ見るとかなり良いですし、実際に規格外の製品が出来上がる可能性は限りなくゼロに近いと思います。しかしながら、確率分布曲線を描いてみると、狙い値通りの製品が出来上がる確率も1%に満たない、となりました。
さらに、この工程がCp=6、Cpk=4と移行した場合、バラツキは狭まった代わりに平均値が狙い値から離れ、狙い値通りの製品が出来上がる確率はほぼゼロとなりました。
規格外の製品を作らないとい...続きを読む

Aベストアンサー

Cpは工程能力指数、Cpkはカタヨリを考慮した工程能力指数です。
だから、実際上はCpがいくら高くなっても、Cpkが変わらないなら、
あまり意味がないといえると思います。

一般的には、Cp(Cpk)は1.33または1.66以上あればよく。
それ以上は、オーバー品質(必要のない品質にコストをかけすぎ)ということか、
もともと、規格上限下限の決め方に問題があったということになります。
あとは、宇宙産業など高い安全率を見込まなければならない場合ですね。

まあ、良いものをわざわざ悪くすることはないので、Cpを低くする必要はないのですが、
今の段階でCpを高くするように努力よりは、
平均値イコール狙い値になるほうに努力したほうがいいのではないでしょうか。

Q製造業の不具合品率って2%くらい?

最近米国企業に転職したのですが、製品の品質に問題があって営業が困っています。製品は米国製ですが米国本社によるとせいぜいその不具合品(不良品)率は全体の2%だから問題ないといいます。こっれそうなんですか?メーカーで働くのが初めてで経験なく基準を教えてください。

Aベストアンサー

MILL-STD-105と言う検査基準が有ります。
日本で言うJISですがJISが引用しているので内容は殆ど同じです。
この検査基準は、AQLと言う判定基準が有って生産母数の確率を検査数で判定する数値が決められています。
物品の取引をする時、この検査基準に従い合否の判定をして受け入れするか否か判断します。
合理的な方法ですが、現在の品質レベルから見ると製品が何か解りませんが2%不良の混在が有ると言うことは日本の市場では大きな問題と思います。
日本人の感覚として箱に入っている商品は全て新品で良品が当たり前です。
後進国の感覚は、展示品とかモニターでも今動いている物が良品と言う見方をします。
日本の市場に添った良品率で無いと先行き思いやられますね。
2%は決して海外の市場では取引上問題では有りませんが信頼は徐々に無くなるでしょう。
関係する仕事で有る品物が中国工場で生産している不良率は0.02%ですが大きな問題です。
品物によって差異は有ると思いますがユーザーに渡る段階で2%は現状に有っていないと思います。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング