白色雑音のパワースペクトルと自己相関関数の関係
で分からないことがあります。
白色雑音の帯域制限のないパワースペクトルについて
、その自己相関関数がデルタ関数になる理由
帯域制限のあるパワースペクトルについて、自己相関
関数がシンク関数になる理由
 分かる人がいらっしゃたらどうぞ教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

nikorin さんの書かれている通りですが,ちと簡単すぎるような...


蛇足かも知れませんが,補足です.

確率変数 x(t) の自己相関関数
(1)  φ(t) = <x(t0) x(t0+t)>
と,パワースペクトル I(ω)とは,フーリエ変換の関係
(2)  I(ω) = (1/2π)∫(-∞~∞) φ(t) exp(-iωt) dt
(3)  φ(t) = ∫(-∞~∞) I(ω) exp(iωt) dω
にあります.
これは,ウィーナー・ヒンチン (Wiener-Khinchin)の定理と名前がついています.

したがって,白色雑音
(4)  I(ω) = c  (for -∞ < ω < ∞)
なら
(5)  φ(t) = ∫(-∞~∞) c exp(iωt) dω = 2πc δ(t)
ですし,帯域制限があって
(6)  I(ω) = c  (for -ω0 < ω < ω0)
        0  (otherwise)
なら
(7)  φ(t) = ∫(-ω0~ω0) c exp(iωt) dω = 2c sin(ω0 t)/t
になります.

(5)と(7)の関係は,δ(x)が極限操作表現の一つが
(8)  δ(x) = lim (a→0) sin ax / πx
であることを思い出せば,なるほどど納得できると思います.
    • good
    • 0

パワースペクトルと相関関数は互いにフーリエ変換の関係にあるからです。

    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qホワイトノイズはガウス分布?

ホワイトノイズはガウス分布に従うというようなことがいろいろな文献に書かれているのですが、
これってどういうことなのでしょうか?
ホワイトノイズとは全周波数に渡って一様なノイズのはずです。
このノイズが平均値とか分散値をもつというのはどういうことなのでしょうか?

Aベストアンサー

#1です。
A#1の補足の質問の回答

> これはσ→∞のとき完全なホワイトノイズになると考えて良いのでしょうか?
もちろん一致します。でもσが無限大のガウスノイズは、現実には実現不可能です。

> この標準偏差が無限のときに、
狭い周波数帯では平坦に見えるということからホワイトノイズと呼ばれるという説明で合っていますでしょうか?
無限は思考的な理論の世界の表現で、現実には無限の周波数は作れませんし、その測定器も存在しません。もしσが無限大のガウス雑音が出来たとしたら、ホワイトノイズと区別できないでしょう(ガウスノイズはσ無限大の極限ではホワイトノイズは一致します)。

別に標準偏差が無限大でなくても、扱うスペクトルの周波数帯で平坦なスペクトル(と見えている)ならホワイトノイズとして扱って良い(見做して良い)でしょう。あくまでも擬似的なホワイトノイズであって、ホワイトノイズそのものではありません。
たとえば、音声などの可聴周波数帯(50Hz~20kHz位)の信号を扱う場合は標準偏差σが100kHz以上のガウス雑音を擬似的なホワイトノイズとして扱って良いでしょう。このσのガウス雑音のスペクトルの大きさ(振幅)は可聴周波数帯のf=0~20KHzの範囲ではほとんど平坦なので、σ=100kHzのガウス分布のガウス雑音は可聴周波数帯ではホワイトノイズの代用として使えるでしょう(この意味で擬似ホワイトノイズです)。同じホワイトノイズ発生器を、帯域100kHzの周波数計測器の雑音源としては全くホワイトノイズの役目をしません。あくまでガウスノイズに過ぎません。

フーリエ積分(変換)を学んで見えるなら、
振幅分布がガウス分布の信号(雑音)の周波数スペクトル(密度)はやはりガウス分布になります。

一方、振幅が無限大、幅ゼロのパルス(ディラックのデルタ関数δ(t))の)のフーリエ変換はフラットなスペクトルになります。しかし、現実には、振幅が無限大、幅ゼロのパルスは作れません。
デルタ関数と見做せる大きな振幅と幅の狭いパルスは作れます。これらのパルスを時間間隔を蜜に発生させた信号源(雑音源)が擬似的なホワイトノイズ発生器ということですね。

なお、真の意味のホワイトノイズ発生器は製作不能です。製作できてもそれがホワイトノイズ発生器であることを確認する測定器も作れないし存在しませんね。あくまで理念的な空想の産物ですね。

#1です。
A#1の補足の質問の回答

> これはσ→∞のとき完全なホワイトノイズになると考えて良いのでしょうか?
もちろん一致します。でもσが無限大のガウスノイズは、現実には実現不可能です。

> この標準偏差が無限のときに、
狭い周波数帯では平坦に見えるということからホワイトノイズと呼ばれるという説明で合っていますでしょうか?
無限は思考的な理論の世界の表現で、現実には無限の周波数は作れませんし、その測定器も存在しません。もしσが無限大のガウス雑音が出来たとしたら、ホワイトノイズと...続きを読む

Qパワースペクトルとは?

パワースペクトルについて説明してくださいと先生に言われました。
全くわからない人に説明するので端的にわかりやすく説明したいのですが誰かできる人はいませんか?ちなみにぼくも詳しいことは全然わかりません。
本などを見ても式があったりしてそれをまた理解することが出来ません。
なんかイメージがわくような方法はないですかね?

Aベストアンサー

スペクトルとは、独立な成分それぞれについての強さをグラフにしたものです。
光の場合、光の種類を色で分類する事ができます。光といっても、その中に青はどれくらい、オレンジはどれくらいとそれぞれの色に応じて強さがあります。
光をそれぞれに分ける方法は、たとえばプリズムがあって、光をプリズムに通すといろいろな色にわかれてみえます。

ニュートンはプリズムを使った実験で有名です。一つ目のプリズムで光を分光し、赤と青の光を残して他の光を遮り、赤と青を二つ目のプリズムやレンズで一つにまとめました。その後でもう一度プリズムを通すと、いったんまとめたのにやはり赤と青しかでてこないのです。これから光の色の独立性(赤や青は、混ざらないものとして独立に扱って良い、ということ)がわかります。

このように色にはそれぞれを別々に扱ってもよいので、色ごとに物事を考えると分かりやすくなります。この色ごとについての強度を「光のスペクトル」、といいます。
強度はふつう「時間当たりに光りが運ぶエネルギー」(パワー)で表すので、この時は「パワースペクトル」です。

こんなふうに物事を自然な「成分(光の時は色)」にわけて考えた物がスペクトルです。詳しくは座標とフーリエ成分の関係について(フーリエ変換について)勉強するといいと思います(電磁場の実空間の振動とフーリエ空間上での振動の対応として)。

スペクトルとは、独立な成分それぞれについての強さをグラフにしたものです。
光の場合、光の種類を色で分類する事ができます。光といっても、その中に青はどれくらい、オレンジはどれくらいとそれぞれの色に応じて強さがあります。
光をそれぞれに分ける方法は、たとえばプリズムがあって、光をプリズムに通すといろいろな色にわかれてみえます。

ニュートンはプリズムを使った実験で有名です。一つ目のプリズムで光を分光し、赤と青の光を残して他の光を遮り、赤と青を二つ目のプリズムやレンズで一つにま...続きを読む

Qガウスノイズについて

ガウスノイズについて教えてください!
実験などでデータにノイズを付加する際に、
ガウスノイズを加えることが多いようですが。

ガウスノイズとはそもそも何なのでしょうか?
予想ではノイズの発生頻度が正規分布であることではないかと思うのですが・・・
付加するノイズの値はどのように決めているのでしょうか?

ご存知の方教えてください。<(_ _)>

Aベストアンサー

ガウスノイズは、おっしゃるとおり、ノイズが入っていないときの値を平均として、適当な分散の正規分布にしたがうノイズのことです。

ノイズの値は、実験の際に信号をノイズ除去プログラムで除去できそうな大きさのノイズであったり、実際の環境で想定される大きさのものに設定すると思います。

Q自己相関関数とパワースペクトル密度関数、フーリエ変換について。

自己相関関数とパワースペクトル密度関数、フーリエ変換について。
パワースペクトル、パワースペクトル密度と自己相関関数についての質問です。

(tは時間、hは次数、fは周波数として)

ある信号x(t)の自己相関関数r(h)をフーリエ変換すると、その信号のパワースペクトル密度関数p(f)になるとネットにあったのですが、パワースペクトル密度関数p(f)と、信号x(t)をそのままフーリエ変換して得たパワースペクトルX(f)はどう違うんでしょうか。


ちなみに数学的な話というよりはコンピュータ上の処理(離散値)で考えています。

もともとパワースペクトルが『自己相関関数の離散フーリエ変換として定義される』と本にはあったのを読みました。

しかし同じ本の中に、『自己相関関数のフーリエ変換は正しくはピリオドグラムと言い、パワースペクトルとはピリオドグラムの平均値で求められる』とも書いてありました。

パワースペクトルとパワースペクトル密度関数はいったいどう違うのか…?とずっと考えているのですが分かりません。

あと(自己、相互)相関関数と(自己、相互)相関係数にはどのような関係があるのですか。回答よろしくお願いします。

前回1つ回答頂いたんですが解決できなかったのですみません、もう一度お願いします。

自己相関関数とパワースペクトル密度関数、フーリエ変換について。
パワースペクトル、パワースペクトル密度と自己相関関数についての質問です。

(tは時間、hは次数、fは周波数として)

ある信号x(t)の自己相関関数r(h)をフーリエ変換すると、その信号のパワースペクトル密度関数p(f)になるとネットにあったのですが、パワースペクトル密度関数p(f)と、信号x(t)をそのままフーリエ変換して得たパワースペクトルX(f)はどう違うんでしょうか。


ちなみに数学的な話というよりはコンピュータ上の処理...続きを読む

Aベストアンサー

http://www.tsunami.civil.tohoku.ac.jp/hokusai2/class/spec/07auto.pdf
の8ページ、9ページに
パワースペクトルG(ω)
自己相関関数R(ω)
信号のフーリエ変換F(ω)
の関係が書いてあります。

パワースペクトルを求めるのに自己相関関数を使うのは
原信号は-無限大から+無限大まで分布してますが、
自己相関関数は普通は0の周りに局在していますから計算が圧倒的に楽ですね。

上記の定義からわかるように、これらの関数はすべてある確定した原信号に対して定義されています。
ピリオドグラムという考え方は、原信号がいくつかあったときにその平均的な見方をした場合に定義される量です。

確率過程と見なされる原信号があったときに、上記自己相関関数などを原信号の母集団のなかで平均操作したものとお考えください。

相関関数と相関係数の違いですが、特定の値についての相関関数が相関係数だと考えればよいと思います。
たとえば同時刻の信号Xと信号Yの積の平均値などが相互相関係数に該当します。
相関関数を扱っているときには相関係数というものを考える意味はないと
思います。

また、自己相関係数というのは常に1で考える意味がないと思います。

http://www.tsunami.civil.tohoku.ac.jp/hokusai2/class/spec/07auto.pdf
の8ページ、9ページに
パワースペクトルG(ω)
自己相関関数R(ω)
信号のフーリエ変換F(ω)
の関係が書いてあります。

パワースペクトルを求めるのに自己相関関数を使うのは
原信号は-無限大から+無限大まで分布してますが、
自己相関関数は普通は0の周りに局在していますから計算が圧倒的に楽ですね。

上記の定義からわかるように、これらの関数はすべてある確定した原信号に対して定義されています。
ピリオドグラムという...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング