人に聞けない痔の悩み、これでスッキリ >>

ものすごく基本的な質問かもしれませんが、教えてください!
よく物質の状態として「薄膜状態」に対して「バルク状」って用いられますが、実際バルク状とはどのような状態のことを言うのでしょうか?アモルファス状態とはまた違うのでしょうか?
さらに、何かこれらのことで参考になる書籍などがありましたら、教えてください!
よろしくお願いします!

このQ&Aに関連する最新のQ&A

バルク とは」に関するQ&A: バルク抵抗とは

A 回答 (2件)

「バルク」は「薄膜」の対義語です。


要は、薄膜ではない、分厚い塊をバルクと言います。

「バルク」という言葉は、結晶状態すなわち、アモルファスとか、単結晶とか、多結晶とか、それらについては何にも言っていません。
(ですから、アモルファスのバルクもあれば、単結晶のバルクもあれば、多結晶のバルクもあります。)


なお、薄膜とバルクの境目がどこかということについては、「量子効果が現れるか否か」ということでは必ずしもありません。
特に定義もされていません。
例えば、厚さ1μm程度以上のものも薄膜と称しますので。
    • good
    • 1
この回答へのお礼

非常に丁寧かつ分かりやすい説明ありがとうございます!
大変よく分かりました!
頭の中のモヤモヤが取れました(笑)

お礼日時:2004/10/19 16:31

薄膜に対して、一般の結晶についてバルクと言います。


アモルファスや結晶を両方含める場合もあります。
要は、薄膜やナノ粒子などの量子効果が現れるもの意外をバルクと言います。
    • good
    • 1
この回答へのお礼

早速の回答ありがとうございます!
大変参考になりました!

お礼日時:2004/10/19 13:37

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qバルク物質について教えてください。

ナノ物質との比較でとらえた「バルク物質」というものについて、
わかりやすく教えてください。

Aベストアンサー

バルクにはかさばる、ひとまとめにするという意味があります。

ナノ物質という概念がない頃は基本的にほとんどの物質がバルクの状態でした。
技術が進歩しさまざまな物質の微細な粒子が作れるようになると
粒子の大きさが違うだけで物理的性質が変化することがわかりました。

一般的には0.1μmよりも多きい粒子はすべてバルク物質としての性質を示すと思います。
ナノ物質やサブナノ物質以外の普通の物質はすべてバルクだと思って構いません。

Q格子定数の求め方教えてください!!

こんにちは。
僕は、結晶学を勉強している大学生です。
現在、斜方晶構造の格子定数を算出しようと勉強しているのですが格子定数a, b, cを求める式を作ることができません。ご存知の方教えて教えて下さい。
斜方晶の関係式は以下のようになります。
1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2
d, h, k, lの値は既知でa=,b=,c=の式を教えていただきたいです。
また、格子定数を簡単に求められるソフトなどをお知りであれば教えて下さい。
どうかよろしくお願いいたします。

Aベストアンサー

> 格子定数a, b, cを求める式を作ることができません。

これは初等数学の教えるとおり,線形独立な(=異なる面方位の)3つ以上の関係がない限り,どうやっても求まりません。線形独立な式が3つあるなら,三元一次連立方程式を解けばよいだけです。

> 斜方晶の関係式は以下のようになります。

斜方晶だけでなく,正方晶でも立方晶でも成り立ちます。

> 格子定数を簡単に求められるソフト

XRD などのブラッグの回折パターンから格子定数を精密に求めるには,通常,リートベルト解析という計算を行います。RIETAN というソフトが有名です。ただ,大雑把で良くて,点群が分かっていて面指数まで分かっているなら,電卓で十分計算できると思います。

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q発光強度の単位は

分光計測器で分光分布の波形を得ました。グラフの横軸は波長で、
単位は[nm]なんですが、縦軸の発光強度の単位が解らないので質
問しました。よろしくお願いします。

Aベストアンサー

一般的に単位はありません。
吸光、蛍光、フォトン数など濃度に対する相対強度
ですので表示するのであれば、強度(intensity)でしょう。

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Qキレート剤とは?。

キレート剤とはどのようなものなのでしょうか?。
そしてどのようなところに利用されているのでしょうか?。
教えてください。

Aベストアンサー

無電解銅めっき液に関して、キレート剤が関与するのは、銅イオンの可溶化、溶解生の安定化が大きな作用と思います。通常、無電解銅めっき液は、アルカリ性であるため、銅イオンは容易に水酸化物となって沈殿してしまい、めっき液が成立しません。そのため、EDTA(エチレンジアミン四酢酸のナトリウム塩)や、クエン酸、酒石酸などのオキシカルボン酸塩(ナトリウム塩など)を配合して、めっき液を調製します。このままでは、金属が析出しないため、ホルマリンや次亜燐酸塩などの還元剤を使用して金属を析出させます。
また、アンモニアは、銅イオンと容易に結合し「銅アンモニア錯イオン」を作り、めっき液に重要なファクターとなっています。アンモニアは、キレート剤、pH緩衝剤の両者に有効に働いていると思います。
キレート剤には、広い意味があるため一言での説明は難しいです。
一般的には、可溶化、安定化作用を利用して、溶液の調製に使用されますが、ある種の金属と特異的に結合する性質を持つ物は、沈降剤(排水処理など)、金属回収(キレート樹脂による交換など)に利用されています。
また、金属イオンと結合し(錯体を形成)することにより、元の金属の特徴を変化させることが可能となるため、電気メッキにおいても合金メッキに利用されています。この場合は、析出電位が大きく異なる異種金属の析出電位を近づける事が可能となり、合金皮膜として析出させることができます。また、めっき液の金属溶解安定性を維持することにも寄与しています。
回答になっていなかったらごめんなさい。参考になったでしょうか?                           

無電解銅めっき液に関して、キレート剤が関与するのは、銅イオンの可溶化、溶解生の安定化が大きな作用と思います。通常、無電解銅めっき液は、アルカリ性であるため、銅イオンは容易に水酸化物となって沈殿してしまい、めっき液が成立しません。そのため、EDTA(エチレンジアミン四酢酸のナトリウム塩)や、クエン酸、酒石酸などのオキシカルボン酸塩(ナトリウム塩など)を配合して、めっき液を調製します。このままでは、金属が析出しないため、ホルマリンや次亜燐酸塩などの還元剤を使用して金属を析出さ...続きを読む

Q近似曲線の設定方法

Sma4 for Windows
で、あるデーターのプロットを取りました。
このプロットに対して、近似(フィッティング)曲線をつくるため
x,yの関数としてy=1-(b/1+(c/x))を入れたいのですが、うまくいきません。
bとcはxの変化によって変化する定数の事です。
 Sma4起動中の、どこに式を入れればいいのか教えて下さい。
 つまり、プロットに対して近似曲線を作るための式の設定方法を教えて下さい。

Aベストアンサー

どのバージョンをお使いでしょうか?
最新バージョンをお使いでしたら、
【解析】→【最小二乗】→【一般関数】を選びます。
関数定義の中の f(x)= というところに、【1-((b/1+(c/x))】と打ち込んであげればお望みの近似式が得られると思いますが。

参考URL:http://www.forest.impress.co.jp/library/sma4win.html

Qバルク構造とはなんですか?

 今、「水」に関する論文を読んでいるのですが、その中でしばしば「水分子がバルク(構造)になった」という記述がでてきます。調べてみたのですが「バルク=
bulk(巨大なもの)」ということなのだろうかというぐらいしか分かりませんでした。
 どなたかお詳しい方に教えていただきたいです。お願いします。

Aベストアンサー

従来はバラバラになっている個体(固体じゃない)が集まった「塊」「集合体」だと思ってください。例えば、粉を押し固めたものはバルク体とよく言います。質問の場合は、水分子が(固まっているかどうかは関係なく)が集合して集まった状態のことを指します。ちなみに、似たような言葉に「クラスター」というのがありますが、クラスターよりも大きなイメージがあります。

Q微結晶、ガラス、アモルファスの違いは?

微結晶、ガラス、アモルファスの違いは何でしょうか?直感的には、より短範囲規則状態に近付くように思うのですが定義も含めてどのように違うのか、また分析方法としてはどのような手法があるのかなどについて教えて下さい。よろしくお願いします。

Aベストアンサー

ガラスとアモルファスの定義において明確な差はないものと思います。ですから,人によって,アモルファスと言ったり,ガラスと表現していると理解しています。
微結晶は,その名の通り,微細結晶構造の周期性があるわけですから,粉末X線回折で結晶格子の面間隔に応じた回折パターンが得られます。これに対し,ガラス,アモルファスでは,ハローパターンと呼ばれる明瞭な回折ピークのない,低角度でブロードな回折図形が観察されます。
ガラス,アモルファスともに準安定状態ですから,再加熱によって,結晶化が起りやすくなります。
さて,アモルファスであるシリカゲル粉末に,結晶である石英の粉末を混ぜた混合物は,結晶質でしょうか?非晶質でしょうか?結晶質と非晶質は連続的に変化することが可能で,明確な境界はありません。したがって,その物質のどの特徴を活かすか(非晶質性を活かすならアモルファス)で呼び方がかわってくるもの推測します。

Q粒界拡散とは

粒界拡散とはどんなことでしょうか。できたら具体的な例で教えてください。おねがいします。

Aベストアンサー

拡散現象は酔歩問題(ランダムウォーク)を併せて議論されたりしますが、酔っ払いが一体どこにたどり着くかという問題に興味を持って、随分以前ですが少しだけ調べたことがあります(←大袈裟、ほんのさわりだけ)。
拡散の熱力学はmomotarosamuraiさんが書かれていますので異なる観点から少し述べてみます。
固体内の拡散機構として4つの機構が提案されています。
1)格子間機構:結晶格子間をランダム歩行しながら原子が移動。
2)空孔機構:熱励起や不純物の添加で生じた結晶中の空孔が隣接する原子と位置を交換しながらランダム歩行していく。
3)準格子間拡散機構:1)と2)を併せたようなもので、格子と格子の間に原子が移動して格子間原子となり、これが次々とランダム歩行していく。
4)リング機構:空孔のような格子欠陥の存在を必要とせず、隣接する原子同士がリングを作り、リングを作った原子が互いに同時に位置を交換し合い、この交換を順次繰り返して拡散していく。

拡散の種類として
1)固体内部の拡散を体積拡散
2)固体表面の原子が表面に沿って拡散するのを表面拡散
●3)粒界拡散:結晶粒界に沿って原子が拡散
→結晶粒界(結晶粒間に生じる界面)やその近傍では原子の配列が乱れていますので、その乱れのお陰で原子は拡散しやすいということになります。
4)転位拡散:結晶中の欠陥である転位(原子配列あるいは結晶格子の乱れが1つの線に沿って生じている欠陥)に沿って原子が拡散
尚、粒界拡散の具体例は「セラミックス」で検索されればそこそこでてくると思います。
下記URLはアルミニューム合金の拡散に関するレポートで拡散の概論を知る上で参考になると思います。

参考URL:http://inaba.nims.go.jp/diff/DIF_Hirano/DIF3/hirano3.html

拡散現象は酔歩問題(ランダムウォーク)を併せて議論されたりしますが、酔っ払いが一体どこにたどり着くかという問題に興味を持って、随分以前ですが少しだけ調べたことがあります(←大袈裟、ほんのさわりだけ)。
拡散の熱力学はmomotarosamuraiさんが書かれていますので異なる観点から少し述べてみます。
固体内の拡散機構として4つの機構が提案されています。
1)格子間機構:結晶格子間をランダム歩行しながら原子が移動。
2)空孔機構:熱励起や不純物の添加で生じた結晶中の空孔が隣接する原子と位置を交換...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング