No.3ベストアンサー
- 回答日時:
(3+√3+√6)r=3+√3
の両辺に3-(√3+√6)をかけると
{3+(√3+√6)}{3-(√3+√6)}r=(3+√3){3-(√3+√6)}
{3^2-(√3+√6)^2}r=(3+√3){(3-√3)-√6}
{9-(3+6√2+6)}r=(3+√3)(3-√3)-(3+√3)√6}
-6√2・r=(9-3)-3√6-3√2
-6√2・r=6-3√6-3√2
とりあえず両辺を-3で割って
2√2・r=-2+√6+√2
両辺を√2で割って
2r=-√2+√3+1
両辺を2で割って順番をそろえると
r=(1+√3-√2)/2
2人目の回答者さんの計算は途中が間違っていますが、最終的にはr=(1+√3-√2)/2となります。
また、r=(1+√3-√2)/2を写真の式に代入すると等号は成立します。
No.2
- 回答日時:
答えは1+√3+√2/2なのですか?
自分の計算と合いません。
r=(3+√3)/(3+√3+√6)
分母、分子に(3+√3-√6)をかけると
r=(3+√3)(3+√3-√6)/(3+√3+√6)(3+√3-√6)
=(3+√3)(3+√3-√6)/((3+√3)^2 - 6)
=(3+√3)(3+√3-√6)/((12+6√3)-6)
=(3+√3)(3+√3-√6)/(6+6√3)
=(3+√3)(3+√3-√6)/6(1+√3)
さらに分母、分子に(1-√3)をかけると
r=(3+√3)(3+√3-√6)(1-√3)/6(1+√3)(1-√3)
=(3+√3)(3+√3-√6)(1-√3)/6(1-3)
=(3+√3)(3+√3-√6)(1-√3)/(-12)
=((3+√3)^2 - (3+√3)√6)(1-√3)/(-12)
=((9+6√3)-(3√6+√18)(1-√3)/(-12)
=(9+6√3-3√6-3√2)(1-√3)/(-12)
=((9+6√3-3√6-3√2)-√3(9+6√3-3√6-3√2))/(-12)
=(9+6√3-3√6-3√2-9√3-18+9√2+3√6)/(-12)
=(-9-3√3+6√2)/(-12)
=(3+√3-2√2)/4
r=(3+√3-2√2)/4
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
カンパ〜イ!←最初の1杯目、なに頼む?
飲み会で最初に頼む1杯、自由に頼むとしたら何を頼みますか? 最初はビールという縛りは無しにして、好きなものを飲むとしたら何を飲みたいですか。
-
家・車以外で、人生で一番奮発した買い物
どんなものにお金をかけるかは人それぞれの価値観ですが、 誰もが一度は清水の舞台から飛び降りる覚悟で、ちょっと贅沢な買い物をしたことがあるはず。
-
【お題】引っかけ問題(締め切り10月27日(日)23時)
【大喜利】 「日本で一番高い山は富士山……ですが!」から始まった、それは当てられるわけ無いだろ!と思ったクイズの問題
-
牛、豚、鶏、どれか一つ食べられなくなるとしたら?
牛肉、豚肉、鶏肉のうち、どれか一種類をこの先一生食べられなくなるとしたらどれを我慢しますか?
-
好きな「お肉」は?
牛肉、豚肉、鶏肉、ラム肉、クマやシカの狩猟肉……。 いろ〜んな肉が食べられるようになりましたよね。 あなたがこれまで食べて「これはうまい!」とか「なんじゃこりゃ!」と好きになったお肉を教えてください。
-
内接円の半径rを求めよ
数学
-
余弦定理の問題です。 三角形ABC において、a=1+√3,b=2,c=√6のときA .B. Cを求
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
xが分子の足し算、どうやるんで...
-
2のX乗+2の−X乗の解き方がわ...
-
答えが2になる複雑な数式を探...
-
3のn-1乗はどうやって解けばよ...
-
f'(x)=0になる時
-
なぜ両辺が負の時に両辺を二乗...
-
指数方程式についてです。 2^x+...
-
一次不定方程式(ユークリッド...
-
大きい数の連立方程式がわかり...
-
整数係数とは?
-
常微分の問題について
-
54mm×86mmは何対何ですか?
-
2乗しても同値性が崩れないと...
-
不等式について
-
両辺が正のとき,両辺を平方でき...
-
分数計算のバツがけについてです。
-
比例式の利用
-
中2です この問題を教えてくだ...
-
複素関数
-
至急お願いします。 不定方程式...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
xが分子の足し算、どうやるんで...
-
2のX乗+2の−X乗の解き方がわ...
-
3のn-1乗はどうやって解けばよ...
-
なぜ両辺が負の時に両辺を二乗...
-
指数方程式についてです。 2^x+...
-
答えが2になる複雑な数式を探...
-
一次不定方程式(ユークリッド...
-
平方根を取る とはどういう...
-
不等式について
-
54mm×86mmは何対何ですか?
-
-0.1と-0.01ってどっちが大き...
-
恒等式の両辺を微分して得られ...
-
数学ではよく、両辺を2乗します...
-
2乗しても同値性が崩れないと...
-
不等式の扱い方
-
分母分子に未知数のある方程式...
-
ルート(平方根)の外し方
-
xのa乗をx=の形にしたい
-
(2)で、両辺を積分して、と書い...
-
a1=1 , an+1 = √1+an (n=1...
おすすめ情報