
No.32ベストアンサー
- 回答日時:
お礼:2023/05/14 06:23
違います
元々の問題
x^2-6x=n^2-1
で
x^2-6xとn^2-1の最大公約数はx^2-6x
(参1)から
-6xn^2+x^2とn^2-1の最大公約数もx^2-6x
といえるけれども
-6xn^2+x^2はx^2-6xの約数とはいえないのです
だから
-6xn^2+x^2=-6x+x^2
とはいえないのです間違いです
論理が破たんしているのです
教授のおっしゃる通りです
今まで、数学の論理に弱い私には懇切丁寧に最後までお付き合いして頂いた御恩は忘れません、教授 ありがとうございました
他に今回の討論を打ち切る理由としては
仮に正しかったとしても、教授が提示した問題には私の考え方では追いつかず、私の答案は易問に対して答案が長すぎます
私の意志のみで勝手に討論を打ち切る勝手さをお許しください
from minamino
No.31
- 回答日時:
お礼2023/05/14 00:53について
違います
(x^2-6x)と(n^2-2)の公約数(x^2-6x)は
2(x^2-3n^2x)とn^2-2に等しい
のではなく
(x^2-6x)と(n^2-2)の公約数(x^2-6x)は
2(x^2-3n^2x)とn^2-2の
公約数(x^2-6x)
に等しい
です
教授 おはようございます
朝早いですね
ちゃんと朝ごはんとか食べないとダメデスヨ
元々の問題
等号が成立していないとき
x²-6x,m²-1 は、公約数は、x²-6xとm²-1 しか持たないようです
しかし
教授が作成した
x²-6x,n²-2 は、x²-6x と n²-2 は公約数に2を持ちます(参1を多用すると)
以下は等号が成立するとき
教授はx=7,n=3としていますが
(x-3)²-n²=7
差が 7 の2つの平方数は
0,1,4,9,16,
16 と 9
(x-3)²=16,m²=9
より、確かに正しいのです
同じ条件下でないのだから、私が示した元々の問題でのアプローチで解けないのではないでしょうか、
No.30
- 回答日時:
お礼:2023/05/13 17:47について
違います
(参 1) から
(x^2-6x)と(n^2-2)の公約数はx^2-6x・・①
を求めたのではありません
(参 1) から公約数も最大公約数も求められません
公約数の意味がわかっていないようです
(x^2-6x)の約数はx^2-6x(=n^2-2)
(n^2-2)の約数はx^2-6x(=n^2-2)
だから
(x^2-6x)と(n^2-2)の公約数はx^2-6x(=n^2-2)
となるのです
n^2(x^2-6x)-x^2(n^2-2)=2(x^2-3xn^2)
と
(参1)から
(x^2-6x)と(n^2-2)の公約数
x^2-6x(=n^2-2) は 2(x^2-3n^2x)とn^2-2の公約数になるのです
2(x^2-3n^2x)とn^2-2の公約数はx^2-6x(=n^2-2)というのは
2(x^2-3n^2x)の約数はx^2-6x(=n^2-2)
(n^2-2)の約数はx^2-6x(=n^2-2)
という意味なのです
(CはAの約数)&(CはBの約数)←→CはAとBの公約数というのです
2(x^2-3n^2x)は2(x^2-3n^2x)の約数だけれども
2(x^2-3n^2x)はn^2-2の約数ではないので
2(x^2-3n^2x)は2(x^2-3n^2x)とn^2-2の公約数ではないから
2(x^2-3n^2x)は2(x^2-3n^2x)とn^2-2の最大公約数ではないのです
あくまで
2(x^2-3n^2x)は最大公約数と主張するならば
2(x^2-3n^2x)はn^2-2の約数である事を証明してください
(参 1) からは公約数を求めることはできないのです
(参1)の定理の意味が全くわかっていないようです
(参1)ax+by=c
a,bの(最大)公約数dとb,cの(最大)公約数は等しいけれども
a,bの(最大)公約数dはcの約数なのだけれども
a,bの(最大)公約数dを求められない
教授
本日もよろしくお願いします
2023/05/13 16:03
について、
>(参 1) から公約数も最大公約数も求められません
もう一度確かめてください
公約数も最大公約数も求めていませんよ
(x^2-6x)と(n^2-2)の公約数は
2(x^2-3n^2x)とn^2-2に等しいと述べています
ここまで、確認をお願いします。
from minamino
No.29
- 回答日時:
お礼:2023/05/13 14:21 について
x^2-6x=n^2-2
だから
(x^2-6x)と(n^2-2)の公約数はx^2-6x(=n^2-2)
(x^2-6x)と(n^2-2)の最大公約数はx^2-6x(=n^2-2)で、間違いない
2(x^2-3n^2x)と(n^2-2)の最大公約数はx^2-6x(=n^2-2)
(x^2-6x)と(n^2-2)の最大公約数x^2-6x(=n^2-2)
と
2(x^2-3n^2x)と(n^2-2)の最大公約数x^2-6x(=n^2-2)
は
一致するけれども
2(x^2-3n^2x)は
2(x^2-3n^2x)と(n^2-2)の公約数でないから
2(x^2-3n^2x)と(n^2-2)の最大公約数でないから
2(x^2-3n^2x)は最大公約数x^2-6x=n^2-2の倍数だけれども
2(x^2-3n^2x)は最大公約数x^2-6x=n^2-2に一致しない
最大公約数の意味がわかっていないようです
最大公約数とは
公約数の中の最大のものなのだから
最大公約数は公約数でなければならない
最大公約数の倍数は公約数でない限り
最大公約数になることはありません
あくまで
2(x^2-3n^2x)は最大公約数に一致すると主張するならば
それを証明してください
(参1)ax+by=c ,a,bの(最大)公約数dとb,cの(最大)公約数は等しいけれども
a,bの(最大)公約数d=c とはいえません
cはa,bの(最大)公約数とはいえないのです
x^2-6x+2=n^2
x^2-6x=n^2-2
の解は
x=7,n=3
7^2-6*7=7=9-2=3^2-2
まず、教授は
>(x^2-6x)と(n^2-2)の公約数はx^2-6x・・①
結局、(x^2-6x)=(n^2-2)等式の関係から
>(x^2-6x)と(n^2-2)の最大公約数はx^2-6xで、間違いない・・②
とお認めになりました
そこで、
では、
(参 1) から①と全く同じことを考えて
(x^2-6x)と(n^2-2)の公約数を求めると・・③
②と同じく、最大公約数、x^2-6x=n^2-2が出てこねばなりません
2(x^2-3n^2x)とn^2-2
だから、
2(x^2-3n^2x)は最大公約数でなければならない
補足
③から出てくるものはすべて最大公約数です
No.28
- 回答日時:
お礼:2023/05/12 10:25 について
(x^2-6x)と(n^2-2)の公約数はx^2-6x=n^2-2
(x^2-6x)と(n^2-2)の最大公約数はx^2-6x=n^2-2
(x^2-6x)と(n^2-2)の最大公約数はx^2-6x=n^2-2
2(x^2-3n^2x)と(n^2-2)の最大公約数はx^2-6x=n^2-2
2(x^2-3n^2x)は最大公約数x^2-6x=n^2-2の倍数だけれども
2(x^2-3n^2x)は最大公約数x^2-6x=n^2-2に一致しない
最大公約数の意味がわかっていないようです
最大公約数とは
公約数の中の最大のものなのだから
最大公約数は公約数でなければならない
最大公約数の倍数は公約数でない限り
最大公約数になることはありません
あくまで
2(x^2-3n^2x)は最大公約数に一致すると主張するならば
それを証明してください
(参1)ax+by=c ,a,bの(最大)公約数dとb,cの(最大)公約数は等しいけれども
a,bの(最大)公約数d=c とはいえません
cはa,bの(最大)公約数とはいえないのです
x^2-6x+2=n^2
x^2-6x=n^2-2
の解は
x=7,n=3
7^2-6*7=7=9-2=3^2-2
教授こんにちは。
早速ですが
>(x^2-6x)と(n^2-2)の最大公約数はx^2-6x=n^2-2
最大公約数が等式っていうのも変ですよね
最大公約数は、x²-6x (or n²-2)で、間違いないですか?
何卒宜しくお願い致します
No.27
- 回答日時:
お礼2023/05/12 10:25について
②はAの議論から
2(x^2-3n^2x)は最大公約数に一致して
というのは間違いです
x^2-6x=2(x^2-3n^2x)
というのも間違いです
2(x^2-3n^2x)は最大公約数に一致しません
あくまで
2(x^2-3n^2x)は最大公約数に一致すると主張するならば
それを証明してください
(参1)ax+by=c ,a,bの(最大)公約数dとb,cの(最大)公約数は等しいけれども
a,bの(最大)公約数d=c とはいえません
cはa,bの(最大)公約数とはいえないのです
x^2-6x+2=n^2
x^2-6x=n^2-2
の解は
x=7,n=3
7^2-6*7=7=9-2=3^2-2
教授よろしくお願いいたします。
議論が平行線です
まず、ひとつづつ、私の考え方をご評価くださいますか?
まず、
A の議論にご批判はありますか?
何卒宜しくお願い致します
No.26
- 回答日時:
お礼2023/05/12 08:31について
(x^2-6x)と(n^2-2)の公約数の1つは
2(x^2-3n^2x)
というのは間違いです
2(x^2-3n^2x)は(x^2-6x)と(n^2-2)の公約数ではありません
公約数の倍数は公約数になるとはいえないのです
あくまで
2(x^2-3n^2x)は(x^2-6x)と(n^2-2)の公約数と主張するならば
それを証明してください
(参1)ax+by=c ,a,bの公約数dとb,cの公約数は等しいけれども
a,bの公約数d=c とはいえません
cはa,bの公約数とはいえないのです
教授こんにちは。
最近お世話になりすぎですね
申し訳ございません。
同じミスをしておりました
改めました
https://imgur.com/a/WYnwUKN
何卒宜しくお願い致します
from minamino
No.25
- 回答日時:
x^2-6x+2=n^2
(x^2-6x)-3x(n^2-2)=x^2-3xn^2
は
整数解
x=7
n=3
をもつけれども
x^2-6x=n^2-2=7
x^2-3xn^2=7^2-3*7*3^2=-140
は
x^2-6x=7 と n^2-2=7 の最大公約数7の倍数だけれども
最大公約数でも公約数でもない
公倍数
教授
おはようございます
昨日は途中で切り上げてしまい申し訳ございません。
連絡しようにも、補足もお礼も使えない状態でしたので
お許しください
教授が、今回ご提示下さった問題考えてみました
以下答案です
何卒宜しくお願い致します
https://imgur.com/a/4v7f0WA
from minamino
No.24
- 回答日時:
補足:2023/05/11 13:57について
n^2(x^2-6x)-x^2(n^2-1)=-6xn^2+x^2
は最大公約数(x^2-6x=n^2-1)の倍数であるけれども
は最大公約数であるとはいえません
(参1)からはいえないのだから
証明してください
-----------------------------
別の問題)
x^2-6x+2 が負でない整数nの平方n^2となるような整数値xを求めよ
-----------------------------------------
x^2-6x+2=n^2
x^2-6x=n^2-2
(x^2-6x)-3x(n^2-2)=x^2-3xn^2 …①
x^2-3xn^2=x^2-6x
3xn^2=6x
n^2=2
となってnが整数であることに矛盾するからその方法は間違い
------------------------------------------------------------
x^2-6x+2=n^2
(x-3)^2-n^2=7
(x-3+n)(x-3-n)=7
x-3+n=7
x-3-n=1
2x-6=8
2x=14
∴
x=7
x^2-6x+2=49-42+2=9=3^2
追伸
>だから
(x^2-6x)と(n^2-2)の公約数x^2-6x(=n^2-2)
の公約数を求めれば、必然的に
(x^2-6x)と(n^2-2)の最大公約数はx^2-6x(=n^2-2)で、間違いない
となる
No.23
- 回答日時:
お礼2023/05/11 11:17について
ax+by=c
のとき
cは、gcd(a,b),(a,bの公約数)の倍数であるけれども
cは、gcd(a,b),(a,bの公約数)であるとはいえません
だから
f(x)-xg(x)=x(x-1)(x-2)(-3)=h(x)は
①と②の公約数の倍数であるけれども
①と②の公約数とはいえません
追伸です
元々の問題は
最大公約数が、 x²-6x
ですが
教授が作成した問題の最大公約数は2(x²-6x)
これでは、いつまでも解決されないとおもいます
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
【教えて!goo ウォッチ 人気記事】風水師直伝!住まいに幸運を呼び込む三つのポイント
記事を読む>>
-
整数問題9 激難だそうです
数学
-
これまでに愚かな回答者を何人も見てきました。 それでも私は問うてみたい。 京都大学の入試問題に 「
数学
-
ある回答を見て、かなり違和感を覚えました。 これはトンデモとみてよいでしょうか? https://o
数学
-
-
4
整数問題 11 素数再びの再び ³ 超難題では?
数学
-
5
整数問題4
数学
-
6
e^xとx^100のxを大きくしていったらe^xの方が大きいというのがよく理解できません。 x^10
数学
-
7
整数問題 10 素数再び
数学
-
8
整数問題9 激難 続き ご迷惑をお掛けしました
数学
-
9
整数問題9 激難 続き (2) 私の答案にご指導ください
数学
-
10
相変わらずヘッタクソ!! A君とB君はコインを1枚ずつ投げ、2枚とも表あるいは2枚とも裏が出れば投げ
数学
-
11
数学の質問です。 (1)の問ではなぜD>0を言う必要がないのでしょうか?
数学
-
12
整数問題
数学
-
13
問題文 正n角形がある(nは3以上の整数)。この正n角形のn個の頂点のうちの3個を頂点とする三角形に
数学
-
14
例えば正の数xがあってらそれを小数第一位で四捨五入すると6になるとします。 この時、5.5≦x<6.
数学
-
15
整数問題8 素数
数学
-
16
この問題の解答を見てみると、2x+y-4=0に(3,2)を代入してみたら、答えが4になってさ4>0だ
数学
-
17
写真の問題についてですが、 赤線部には「x=2で極小値0をとるので、f'(2)=0」と書いてあります
数学
-
18
無理数と有理数について
数学
-
19
複素解析の教科書の問題で略解しかないので、 解き方を教えてください
数学
-
20
写真の数学の質問です。 (2)において、pは素数で6で割って1になることが確定しているのでp=6を代
数学
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
3のn-1乗はどうやって解けばよ...
-
指数方程式についてです。 2^x+...
-
xが分子の足し算、どうやるんで...
-
なぜ両辺が負の時に両辺を二乗...
-
2のX乗+2の−X乗の解き方がわ...
-
54mm×86mmは何対何ですか?
-
-0.1と-0.01ってどっちが大き...
-
平方根を取る とはどういう...
-
恒等式の両辺を微分して得られ...
-
図形と方程式
-
内部収益率 分数の2次方程式の...
-
数学ではよく、両辺を2乗します...
-
答えが2になる複雑な数式を探...
-
両辺から自然対数をとった時
-
整数係数とは?
-
なぜ二次方程式は両辺を文字で...
-
x>=0, y>=0のとき、√x+√y=1の曲...
-
比例式の利用
-
0,8888・・・はなぜ「有理数」...
-
xのa乗をx=の形にしたい
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
なぜ両辺が負の時に両辺を二乗...
-
2のX乗+2の−X乗の解き方がわ...
-
3のn-1乗はどうやって解けばよ...
-
基礎問題精講 数学ⅠA 127 (2)が...
-
平方根を取る とはどういう...
-
-0.1と-0.01ってどっちが大き...
-
答えが2になる複雑な数式を探...
-
指数方程式についてです。 2^x+...
-
2乗しても同値性が崩れないと...
-
xが分子の足し算、どうやるんで...
-
一次不定方程式(ユークリッド...
-
不等式について
-
54mm×86mmは何対何ですか?
-
恒等式の両辺を微分して得られ...
-
数学ではよく、両辺を2乗します...
-
xのa乗をx=の形にしたい
-
0=83/160+2x^2-81/2x^2 x>0 っ...
-
中学生の数学
-
4の50乗を9で割った時の余りは...
-
ルート(平方根)の外し方
おすすめ情報
syotao先生、お久しぶりです
お元気でしたか?
偶には顔出してくださいよ
私は、友達もいないし、、孤独な毎日なんですよ
この問題、直ぐに解けるのですが、もう少し詰めてみます
その際には、先生、
何卒宜しくお願い致します
from minamino
教授
おはようございます
昨日は遅くまで本当にありがとうございました
この問、正解は私でも直ぐにでも出さるのですが
納得がいかず、試行錯誤中です、
答案が出来次第、教授にご評価、頂きたいです
何卒宜しくお願い致します
from minamino
お久しぶりです。
ご回答ありがとうございました
私の答案です
ご評価、ご指導ください
ご回答ありがとうございました
私の答案です
ご評価、ご指導ください
お久しぶりです
ご回答ありがとうございます
私の答案です
ご評価、ご指導ください
お初です
宜しくお願い致します
ご回答ありがとうございました
私の答案です
ご評価、ご指導ください
syotao先生
おはようございます。
本日もよろしくお願いいたします
一日中昨日は横になっていて、今日は気力十分です
答案、書き直しました
ご評価、ご指導ください
from minamino
教授こんにちは。
本日もお世話になっております
ご指摘の
>n^2=-2となってn^2≧0に矛盾するからその方法は間違い
ですが、n²=-2 でなければ①と②は同じ公約数を持たないわけですよね
それでは①と②は同じ公約数を持たないわけです
私は、同じ公約数を持つことを使い本問を議論しているのです
似た問題で議論をするとこういう意味のない議論に発展しやすいので
本題で議論していただけると幸いです。
from minamino
少し早いですが、
教授おはようございます!
昨日は遅くまでありがとうございます
早速ですが私の見解です
お疲れ様です。
最後のつもりでいたってsimpleに纏めてみました
何卒宜しくお願い致します