グラフが正しいかご指導ご鞭撻のほどよろしくお願いします
何卒宜しくお願い致します。
画像拡大リンク先
https://imgur.com/a/SS7KsdA
No.5ベストアンサー
- 回答日時:
#3です。
補足に対しての回答。
グラフの書かれている向きはこれでよいでしょう。
2点突っ込みを。
1.グラフの半分が破線となっていますが、実線でよいのでは?
x,yの符号等に制約はないはずなので放物線は全て実線でよいかと。
2.頂点の位置
a>0でグラフが書かれていますがその時の頂点は(-b/(2a),0,-b/(4a^2))となっています。
ここでグラフを見るとx座標は正、w座標は負となっています。
しかし、-b/(4a^2)=-b/(2a)*1/(2a)
でありa>0であることから1/(2a)>0となり、-b/(2a)と-b/(4a^2)の符号は一致することがわかります。
ということは頂点がx=0よりも上にある場合、w=0よりも右になければならないことがわかります。
懇切丁寧にさいごまでお付き合いいただきありがとうございました
大変勉強になりました
これからもよろしくお願いします。
from minamino
No.3
- 回答日時:
#1です。
>早速ですが、二次方程式において
係数が実数でない場合判別式は使えないと思うのですが
問題を見るとa,bは実数となっています。
この問題ではwは実数です。
係数に複素数はありません。
ただ、#1で言っているのは判別式は関係ありません。
a*z^2+b*z-w=0
という2次方程式を解く、ただそれだけです。
zは複素数でOKなので解の公式を使えばzを求めることは必ずできますね、というだけのことです。
解の公式は係数が複素数でも使用可能(ただし、√の中に複素数が出てきます)ですので、a,bが複素数でもこの問題は成り立ちます。
それとここで追記しておきます。
#2様。
g(y)のグラフはyw平面上にはありません。
y≠0という条件を付けるとx=-b/(2a)の拘束が付きます。
g(y)のグラフは平面x=-b/(2a)上になります。w=f(x)のグラフとx=-b/(2a),y=0で共有点を持ちます。
No.1
- 回答日時:
違うような気がする。
y-wのグラフ(w=g(y)のグラフ)は軸がx=-b/(2a),y=0となる放物線、つまり軸はw=f(x)と同じ線になる。
90°回っている。
この問題の証明はもっと簡単にできる。
w=a*z^2+b*z
を
a*z^2+b*z-w=0
と変形しzの2次方程式とみなす。
この2次方程式は全ての実数wに対し解くことができる。(2次方程式の解の公式)
このことからwは全ての実数値を取ることができることが言える。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 血液・筋骨格の病気 宜しくお願い致します。 医師に指導は受けていますが。 不安です。 膝、足首が痛いのですが、足首からし 2 2022/07/14 18:37
- 怪我 病気のご指導ご鞭撻お願いいたします。足のケガで入退院しました。それから半年以内に、また入院は、有りな 4 2023/02/01 20:05
- その他(パソコン・周辺機器) 動画ファイルのチャプターマークについて。 1 2023/01/09 05:21
- その他(社会・学校・職場) 昇進した際の挨拶で、最後にご指導ご鞭撻の程よろしくお願いいたしますというのは変ですか? 古臭いなど現 4 2023/05/09 21:18
- その他(社会・学校・職場) 昇進した際の挨拶で、最後にご指導ご鞭撻の程よろしくお願いいたしますというのは変ですか? 古臭いなど現 4 2023/05/09 21:18
- マナー・文例 昇進が決まり偉い方の前で初めて挨拶をする際 最後の締めにご指導ご鞭撻の程よろしくお願いいたしますとい 2 2023/05/09 21:36
- マナー・文例 昇進が決まり偉い方の前で初めて挨拶をする際 最後の締めにご指導ご鞭撻の程よろしくお願いいたしますとい 2 2023/05/09 21:36
- 数学 複素三角関数sin(z)のビジュアル化について 3 2024/05/12 07:24
- MySQL PHPとMySQLを使った掲示板の作り方 1 2022/06/02 13:00
- 数学 整数問題9 激難 続き (2) 私の答案にご指導ください 1 2023/04/25 16:41
このQ&Aを見た人はこんなQ&Aも見ています
-
【お題】NEW演歌
【大喜利】 若い人に向けたことは分かるけど、それはちょっと寄せ過ぎて変になってないか?と思った演歌の歌詞
-
大人になっても苦手な食べ物、ありますか?
大人になっても、我慢してもどうしても食べれないほど苦手なものってありますよね。 あなたにとっての今でもどうしても苦手なものはなんですか?
-
「覚え間違い」を教えてください!
私はかなり長いこと「大団円」ということばを、たくさんの団員が祝ってくれるイメージで「大円団」だと間違えて覚えていました。
-
いけず言葉しりとり
はんなりと心にダメージを与える「いけず言葉」でしりとりをしましょう。 「あ」あら〜しゃれた服着てはりますな 遠くからでもわかりましたわ
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
三角関数の変換で納得いかないところがあります
数学
-
画像の質問①〜③に答えてわかりやすく頂けるとありたいです。 どうかよろしくお願い致します。
数学
-
-
4
min関数 一橋大学過去問
数学
-
5
複素数の問題で質問があります
数学
-
6
iに絶対値がつくとどうなるのかを教えてください
数学
-
7
整数問題です。
数学
-
8
高校数学が日常で役立つ場面を教えてください!
数学
-
9
この積分の計算がどこで間違っているのかを教えてください
数学
-
10
数学を勉強すると論理的思考力が向上するという疑わしい主張が横行しているのはなぜですか?
数学
-
11
e^π、e^2πは、別の綺麗な数式で表せますか?
数学
-
12
逆三角関数の方程式の問題です。解いたらこうなりましたが、本には、解なしと書かれていました。僕が作った
数学
-
13
数学I 三角形ABCにおいてbtanA=atanBが成り立っているとき、この三角形はどのような三角形
数学
-
14
わかりませんでした。
数学
-
15
循環小数を分数にする方法
数学
-
16
以前にも質問させていただいたのですが、理解することができなかったので再度質問させていただきます。 写
数学
-
17
a, bがa>0, b>0,1/a+2/b=3を満たして変化するとき, (1) abの最小値を求めよ
数学
-
18
二項係数は2で何回割れるか
数学
-
19
新高一。数学のテストがもう少しなのに、難しくて初っ端から赤点を取ってしまいそうです。 YouTube
数学
-
20
行列式を帰納てきに求めるにあたって、 このBの行列って小さいnでどうなりますか? 例えば 一次の時a
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学の質問です。分数関数の分...
-
三角関数 y=cos3θのグラフの書...
-
積分の面積を求める問題で 上−...
-
積分について
-
三次関数のグラフ 微分した二次...
-
数3 関数の極限 どういう問題の...
-
4乗のグラフ
-
数学です。このグラフの概形の...
-
x^2-4x+4>0の解
-
-b/2aが2次関数の軸?になる理...
-
「グラフの概形を描け」と「グ...
-
増減表について
-
C#の3次元グラフの表示に関す...
-
関数の極限について
-
高校二年生になったばかりの者...
-
(m-1)(m-4)≧0からどうしてm≦1、...
-
双曲線関数の近似式を求める方法
-
Xについての方程式|x²-1|+x=Kが...
-
【 数Ⅰ 2次関数 】 問題 関数y=...
-
ゴンペルツ曲線の式
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
三角関数 y=cos3θのグラフの書...
-
積分の面積を求める問題で 上−...
-
4乗のグラフ
-
関数のグラフでy'''はなにを意...
-
【 数Ⅰ 2次関数 】 問題 関数y=...
-
数3 関数の極限 どういう問題の...
-
数学の質問です。分数関数の分...
-
タンジェントとアークタンジェ...
-
「グラフの概形を描け」と「グ...
-
10の1.2乗が、なぜ16になるのか...
-
関数、y=0 などのグラフの...
-
高校二年生になったばかりの者...
-
x^2-4x+4>0の解
-
ゴンペルツ曲線の式
-
(高校数学) 放物線y=(x-2)^2とx...
-
増減表について
-
「2次不等式2x²+3x+m+1<0を満た...
-
2点集中荷重片持ち梁について
-
Xについての方程式|x²-1|+x=Kが...
-
極値と変曲点を同時に持つ点あ...
おすすめ情報
先生お久しぶりです
お元気でしたか
数学Ⅲの勉強を始めました
複素数平面の勉強は8日め目ですが
色々と教えてください。
何卒宜しくお願い致します
from minamino
こんにちは
早速ですが、二次方程式において
係数が実数でない場合判別式は使えないと思うのですが、
度々申し訳ございません。
画像拡大リンク先
https://imgur.com/a/cS8gVuA
グラフを改めました
ご指導ご鞭撻のほどよろしくお願いします