AKB48の推しメンをセンターにできちゃうかもしれない!? >>

統計学でいうRSD%の平易な説明と計算方法を知りたいのですが。標準偏差はわかります。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

RSD%とは、相対標準偏差をパーセントで表示したものと思われます。



相対標準偏差(%)=(標準偏差/平均値)×100

次のページは、「相対標準偏差 RSD 平均値」で検索して出たものの一つです。
http://www.technosaurus.co.jp/product/mlh_faq_sd …

参考URL:http://www.technosaurus.co.jp/product/mlh_faq_sd …
    • good
    • 8

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QExcelでCVを計算するには

Excelを使ってCV(変動係数)を計算するにはどうすればいいのでしょうか。

Aベストアンサー

CV(変動係数)=標準偏差/平均

今、範囲(A1:Z1)にデータがあるとして


標準偏差=STDEVP(A1:Z1)

平均値=AVERAGE(A1:Z1)

従って CV=STDEVP(A1:Z1)/AVERAGE(A1:Z1)

で如何でしょう?

標準偏差に不偏標準偏差を使う場合はSTDEV(A1:Z1)にしてください。

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q<統計学> CV(変動係数)について

CV値は
  
  CV=(標準偏差/平均値)

で算出されますよね?

ただばらつきを評価するだけなら、標準偏差でいいと思うのですけど、
平均値で割ることで何が分かるのですか?

教えてください!! お願いします。

Aベストアンサー

平均100で標準偏差(バラツキの目安)が1なら、1%のばらつきの程度です。

これを、平均10000で標準偏差100と並べてみると、数字の大きさからこちらのほうがばらつきが大きいように一瞬思いますが、実はどちらも1%のばらつきなのですね。

そういう桁によらず何%のバラツキなのか、というのを比較把握するには桁を合わせる意味で平均値で割って合わせる(正規化する)ほうが便利なのです。

QW/V%とは?

オキシドールの成分に 過酸化水素(H2O2)2.5~3.5W/V%含有と記載されています。W/V%の意味が分かりません。W%なら重量パーセント、V%なら体積パーセントだと思いますがW/V%はどのような割合を示すのでしょうか。どなたか教えていただけないでしょうか。よろしくお願いいたします。

Aベストアンサー

w/v%とは、weight/volume%のことで、2.5~3.5w/v%とは、100ml中に2.5~3.5gの過酸化水素が含有されているということです。
つまり、全溶液100ml中に何gの薬液が溶けているか?
ということです。
w/v%のwはg(グラム)でvは100mlです。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q医薬品製造のPV PQの意味について

私は、現在医薬品製造の仕事をしています。そこでよくPVとPQという言葉が出てきますが意味を正しく理解できていません。おバカにでもわかるように説明していただけたら幸いです。よろしくお願いします。

Aベストアンサー

非常に大まかに言うと次の通りです。

PQ:製造工程で使用する機器が正確に動いていることを確認、保証すること
PV:製造プロセスが目的の製品を製造するのに適していることを確認、保証すること


参考までに、それぞれ下記のように定義されています。

PQ(性能適格性評価;Performance Qualification)
設備及びそれに付随する補助装置及びシステムが,承認された製造方法及び規格に基づき効果的かつ再現性よく機能できることを確認し文書化すること。

PV(プロセスバリデーション;Process Validation)
設定パラメータ内で稼働する工程が、設定規格及び品質特性に適合した中間体・原薬を製造するために効果的かつ再現性よく機能できることに関する文書による確証である。

Q吸光度の単位

吸光度の単位は何でしょうか!?
一般的には単位はつけていないように思われるのですが。。
宜しくお願いします。

Aベストアンサー

物理的には、No.1さんも書かれているように吸光度も透過度も基本的に同じ単位系の物理量どうしの「比」なので「無単位」です。しかし、無名数では他の物理量、特に透過度と区別が付かないので、透過度は"透過率"として「%」を付けて表し、"吸光度"は「Abs(アブス)」を付けて呼ぶのが業界(分析機器工業会?)のならわしです。

Q<統計学> CV(変動係数)について教えてください。

CV値は
  
  CV=(標準偏差/平均値)

で算出されますよね?

ただばらつきを評価するだけなら、標準偏差でいいと思うのですけど、
平均値で割ることで何が分かるのですか?

教えてください!! お願いします。

Aベストアンサー

A という大きな群れを作る魚と、B という小さな群れを作る魚の、群れの大きさのばらつきはどちらが激しいか、知りたいとします。群れの大きさは魚の数で測ります。

ばらつきを標準偏差で測れば、A の方が B より大きいだろうことは想像がつきます。なぜなら、群れは 0 より小さくはならないので、もともと小さい群れしか作らない B は、ばらつく余地が少ないからです。

けれど A の群れの大きさはどれも平均の一割程度しか違わないのに、B は平均の数倍程度の違いは普通だ、ということもありえます。このように平均に対する相対的なばらつきを比べたければ、 変動係数で測った方が標準偏差で測るよりも良いと思いませんか?

こんなふうに、非負の値をとる変量には、平均が大きくなると標準偏差も大きくなるようなものは、たくさんあります。そのとき変動係数なら無単位になり、比較に便利です。平均と標準偏差は単位が同じなので。

Q検量線

検量線とはどういったものなのか?
検量線を引くとはどういったことをすればいいのかおしえてください。

Aベストアンサー

masazo27さんの2番煎じとなりますが、改めて説明を試みたいと思います。
検量線を引くとは、測定器の固有差を見極め、その固有差を見極めた上で、未知試料について正確な測定を行うことを目的にしています。
例えば、ある水溶液中の砂糖の濃度を知ることが目的であるとします。砂糖の濃度を知ることが目的の検量線とは、砂糖0.1g、0.2g、0.3gをそれぞれ1Lの水に溶かし(あらかじめ濃度が既知の試料を作成し)、それを測定器にかけ、測定器の指示値を記録します。それを、横軸を濃度、縦軸を指示値にとったグラフ用紙に記入し、直線なり曲線で結びます(直線か、曲線かは理論的なものに依存します)。こうしてできたラインが検量線です。この検量線により、測定器の実際の指示値から濃度を推定できるようになります。ただし、検量線は濃度0.1~0.3g/Lの間で作成したので、その検量線の有効性もその間と言わざるを得ません。検量線から推定して1.5g/Lとでた場合には、その値の信憑性は低いと言わざるを得ないでしょう。その際は、O,1.0,2.0g/Lの既知試料等で検量線を引き直す必要があると思います。

masazo27さんの2番煎じとなりますが、改めて説明を試みたいと思います。
検量線を引くとは、測定器の固有差を見極め、その固有差を見極めた上で、未知試料について正確な測定を行うことを目的にしています。
例えば、ある水溶液中の砂糖の濃度を知ることが目的であるとします。砂糖の濃度を知ることが目的の検量線とは、砂糖0.1g、0.2g、0.3gをそれぞれ1Lの水に溶かし(あらかじめ濃度が既知の試料を作成し)、それを測定器にかけ、測定器の指示値を記録します。それを、横軸を濃度、縦軸を指示値にとったグラ...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング